[1] Carpenter C R, Keim S M, Milne W K, et al. Thrombolytic therapy for acute ischemic stroke beyond three hours[J]. J Emerg Med, 2011,40(1): 82-92. [2] Zhang J H, Badaut J, Tang J, et al. The vascular neural network-a new paradigm in stroke pathophysiology[J]. Nat Rev Neurol, 2012, 8(12): 711-716. [3] Liu P, Liu X, Liou A K, et al. The neuroprotective mechanism of erythropoietin-TAT fusion protein against neurodegeneration from ischemic brain injury[J]. CNS Neurol Disord Drug Targets, 2014,13(8): 1465-1474. [4] Zhou Z, Wei X, Xiang J, et al. Protection of erythropoietin against ischemic neurovascular unit injuries through the effects of connexin43[J]. Biochem Biophys Res Commun, 2015, 458(3): 656-662. [5] Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system[J]. Int J Biol Sci, 2014, 10(8): 921-939. [6] Zechariah A, ElAli A, Hermann D M. Combination of tissue-plasminogen activator with erythropoietin induces blood-brain barrier permeability, extracellular matrix disaggregation, and DNA fragmentation after focal cerebral ischemia in mice[J]. Stroke, 2010,41(5): 1008-1012. [7] Jia L, Chopp M, Zhang L, et al. Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke[J]. Stroke, 2010,41(9): 2071-2076. [8] Ehrenreich H, Weissenborn K, Prange H, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke[J]. Stroke, 2009, 40(12): e647-656. [9] Longa E Z, Weinstein P R, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91. [10] Belayev L, Alonso O F, Busto R, et al. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model[J]. Stroke, 1996, 27(9): 1616-1622; discussion 1623. [11] De Ryck M, Van Reempts J, Borgers M, et al. Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats[J]. Stroke, 1989, 20(10): 1383-1390. [12] Kim S J, Kim B K, Ko Y J, et al. Functional and histologic changes after repeated transcranial direct current stimulation in rat stroke model[J]. J Korean Med Sci, 2010, 25(10): 1499-1505. [13] Biegel D, Spencer D D, Pachter J S. Isolation and culture of human brain microvessel endothelial cells for the study of blood-brain barrier properties in vitro[J]. Brain Res, 1995, 692(1-2): 183-189. [14] Dang S, Liu X, Fu P, et al. Neuroprotection by local intra-arterial infusion of erythropoietin after focal cerebral ischemia in rats[J]. Neurol Res, 2011, 33(5): 520-528. [15] Sano R, Reed J C. ER stress-induced cell death mechanisms[J]. Biochim Biophys Acta, 2013,1833(12): 3460-3470. [16] Sovolyova N, Healy S, Samali A, et al. Stressed to death-mechanisms of ER stress-induced cell death[J]. Biol Chem, 2014, 395(1): 1-13. [17] 赵雅宁, 王珠,李建民,等. 内质网应激相关分子CHOP和磷酸化JNK在高血压全脑缺血大鼠海马区的表达[J]. 中国医科大学学报,2013,42(5) :431-435. [18] Nakka V P, Gusain A, Raghubir R. Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats[J]. Neurotox Res, 2010, 17(2): 189-202. [19] Xin Q, Ji B, Cheng B, et al. Endoplasmic reticulum stress in cerebral ischemia[J]. Neurochem Int, 2014, 68: 18-27. [20] Liu X, Zhao S, Liu F, et al. Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis[J]. Transl Stroke Res, 2014, 5(6): 692-700. [21] Li F, Hayashi T, Jin G, et al. The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers[J]. Brain Res, 2005, 1048(1-2): 59-68. |