[1]Christenson S A, Smith B M, Bafadhel M, et al. Chronic obstructive pulmonary disease[J]. Lancet, 2022, 399(10342): 2227-2242.
[2]Celli B R, Wedzicha J A. Update on clinical aspects of chronic obstructive pulmonary disease[J]. N Engl J Med, 2019, 381(13): 1257-1266.
[3]Wang Z, Maschera B, Lea S, et al. Airway host-microbiome interactions in chronic obstructive pulmonary disease[J]. Respir Res, 2019, 20(1): 113.
[4]Yadava K, Pattaroni C, Sichelstiel A K, et al. Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and autoantibodies[J]. Am J Respir Crit Care Med, 2016, 193(9): 975-987.
[5]Sethi S. Infection as a comorbidity of COPD[J]. Eur Respir J, 2010, 35(6): 1209-1215.
[6]Ritchie A I, Wedzicha J A. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations[J]. Clin Chest Med, 2020, 41(3): 421-438.
[7]Matkovic Z, Miravitlles M. Chronic bronchial infection in COPD. Is there an infective phenotype?[J]. Respir Med, 2013, 107(1): 10-22.
[8]Pasquale M K, Sun S X, Song F, et al. Impact of exacerbations on health care cost and resource utilization in chronic obstructive pulmonary disease patients with chronic bronchitis from a predominantly Medicare population[J]. Int J Chron Obstruct Pulmon Dis, 2012, 7: 757-764.
[9]Wu C T, Li G H, Huang C T, et al. Acute exacerbation of a chronic obstructive pulmonary disease prediction system using wearable device data, machine learning, and deep learning: development and cohort study[J]. JMIR Mhealth Uhealth, 2021, 9(5): e22591.
[10]Suzuki K, Yanai M, Hayashi Y T, et al. Edwardsiella tarda bacteremia with psoas and epidural abscess as a food-borne infection: a case report and literature review[J]. Intern Med, 2018, 57(6): 893-897.
[11]Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2023 report)[EB/OL]. [2023-07-15]. https://goldcopd.org/wp-content/uploads/2023/03/GOLD-2023-ver-1.3-17Feb2023_WMV.pdf.
[12]Wang Z, Locantore N, Haldar K, et al. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis[J]. Am J Respir Crit Care Med, 2021, 203(12): 1488-1502.
[13]Leung K Y, Siame B A, Tenkink B J, et al. Edwardsiella tarda-virulence mechanisms of an emerging gastroenteritis pathogen[J]. Microbes Infect, 2012, 14(1): 26-34.
[14]Schlenker C, Surawicz C M. Emerging infections of the gastrointestinal tract[J]. Best Pract Res Clin Gastroenterol, 2009, 23(1): 89-99.
[15]Ma R, Su H L, Jiao K P, et al. Association between IL-17 and chronic obstructive pulmonary disease: a systematic review and meta-analysis[J]. Int J Chron Obstruct Pulmon Dis, 2023, 18: 1681-1690.
[16]Hilty M, Wüthrich T M, Godel A, et al. Chronic cigarette smoke exposure and pneumococcal infection induce oropharyngeal microbiota dysbiosis and contribute to long-lasting lung damage in mice[J]. Microb Genom, 2020, 6(12): mgen000485.
[17]Wu X, Li R F, Lin Z S, et al. Coinfection with influenza virus and non-typeable Haemophilus influenzae aggregates inflammatory lung injury and alters gut microbiota in COPD mice[J]. Front Microbiol, 2023, 14: 1137369.
[18]Liang W J, Yang Y Q, Gong S H, et al. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease[J]. Cell Host Microbe, 2023, 31(6): 1054-1070.e9.
[19]Frach L, Jami E S, McAdams T A, et al. Causal inference methods for intergenerational research using observational data[J/OL]. Psychol Rev. [2023-04-24]. https://doi.org/10.1037/rev0000419.
[20]Luo J Y, Chen H A, Feng Y Y, et al. Blood eosinophil endotypes across asthma and chronic obstructive pulmonary disease (COPD)[J]. Can Respir J, 2022, 2022: 9656278.
[21]Yu S S, Zhang J, Fang Q H, et al. Blood eosinophil levels and prognosis of hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Am J Med Sci, 2021, 362(1): 56-62.
[22]David B, Bafadhel M, Koenderman L, et al. Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait[J]. Thorax, 2021, 76(2): 188-195.
[23]Xu X, Yu T, Dong L L, et al. Eosinophils promote pulmonary matrix destruction and emphysema via Cathepsin L[J]. Signal Transduct Target Ther, 2023, 8(1): 390.
[24]Cayrol C, Girard J P. Interleukin-33 (IL-33): a critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine[J]. Cytokine, 2022, 156: 155891.
[25]Li Q, Hu Y, Chen Y, et al. IL-33 induces production of autoantibody against autologous respiratory epithelial cells: a potential mechanism for the pathogenesis of COPD[J]. Immunology, 2019, 157(2): 137-150.
[26]Shyam Prasad Shetty B, Chaya S K, Kumar V S, et al. Inflammatory biomarkers interleukin 1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α) are differentially elevated in tobacco smoke associated COPD and biomass smoke associated COPD[J]. Toxics, 2021, 9(4): 72.
[27]Barnes P J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2016, 138(1): 16-27.
[28]Garth J, Barnes J W, Krick S. Targeting cytokines as evolving treatment strategies in chronic inflammatory airway diseases[J]. Int J Mol Sci, 2018, 19(11): 3402.
|