国家卫生健康委加强脑卒中防治工作减少百万新发残疾工程专家委员会 中华预防医学会卒中预防与控制专业委员会
收稿日期:2025-11-05
修回日期:2025-12-09
出版日期:2026-02-21
发布日期:2026-01-20
通讯作者:
吉训明
E-mail:jixm@ccmu.edu.cn
作者简介:执笔:吴川杰、吴迪、赵文博、李明、褚学红、徐率力、王永乐、刘圆圆、张婉婉
Stroke Prevention Project, National Health Commission, Stroke Prevention and Control Professional Committee of the Chinese Preventive Medicine Association
Received:2025-11-05
Revised:2025-12-09
Online:2026-02-21
Published:2026-01-20
摘要: 卒中是全球范围内的主要致死和致残性疾病,其中约70%的卒中为急性缺血性卒中。再灌注治疗(如静脉溶栓和急诊血管内治疗)是急性缺血性卒中的首选治疗方法,但部分患者预后仍不理想。近年来,基于再灌注治疗的脑保护研究取得了重要进展,部分脑保护药物和治疗方法显示出良好的临床应用前景。本共识总结了近年来再灌注治疗基础上脑保护领域的研究进展,并结合我国实际,编制出一套临床指导性强的专家共识,旨在为急性缺血性卒中脑保护的研究与临床应用提供科学依据,方便临床优化救治策略,改善患者预后。
中图分类号:
国家卫生健康委加强脑卒中防治工作减少百万新发残疾工程专家委员会 中华预防医学会卒中预防与控制专业委员会. 急性缺血性卒中再灌注治疗基础上脑保护治疗中国专家共识[J]. 首都医科大学学报, doi: 10.3969/j.issn.1006-7795.2026.01.001.
Stroke Prevention Project, National Health Commission, Stroke Prevention and Control Professional Committee of the Chinese Preventive Medicine Association. Chinese expert consensus on cytoprotection based on reperfusion therapy for acute ischemic stroke[J]. Journal of Capital Medical University, doi: 10.3969/j.issn.1006-7795.2026.01.001.
| [1]Wu S M, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. [2]Powers W J, Rabinstein A A, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2019, 50(12): e344-e418. [3]Li S Y, Gu H Q, Li H, et al. Reteplase versus Alteplase for acute ischemic stroke[J]. N Engl J Med, 2024, 390(24): 2264-2273. [4]Majoie C B, Cavalcante F, Gralla J, et al. Value of intravenous thrombolysis in endovascular treatment for large-vessel anterior circulation stroke: individual participant data meta-analysis of six randomised trials[J]. Lancet, 2023, 402(10406): 965-974. [5]Wu C J, Chu X H, Zhu Z W, et al. Improving long-term functional outcomes of ischemic stroke in the reperfusion era[J]. Engineering, 2024, 40: 15-18. [6]O'Collins V E, Macleod M R, Donnan G A, et al. 1 026 experimental treatments in acute stroke[J]. Ann Neurol, 2006, 59(3): 467-477. [7]Goyal M, Menon B K, Van Zwam W H, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials[J]. Lancet, 2016, 387(10029): 1723-1731. [8]Shi L G, Rocha M, Leak R K, et al. A new era for stroke therapy: integrating neurovascular protection with optimal reperfusion[J]. J Cereb Blood Flow Metab, 2018, 38(12): 2073-2091. [9]Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest[J]. N Engl J Med, 2002, 346: 549-556. [10]Peberdy M A, Callaway C W, Neumar R W, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association uidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2010, 18 (Suppl 3): S768-S786. [11]Kattwinkel J, Perlman J M, Aziz K, et al. Part 15: neonatal resuscitation: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2010, 122(18 Suppl 3): S909-S919. [12]Sakoh M, Gjedde A. Neuroprotection in hypothermia linked to redistribution of oxygen in brain[J]. Am J Physiol Heart Circ Physiol, 2003, 285(1): H17-H25. [13]Deng H, Han H S, Cheng D Y, et al. Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation[J]. Stroke, 2003, 34(10): 2495-2501. [14]Li H, Wang D S. Mild hypothermia improves ischemic brain function via attenuating neuronal apoptosis[J]. Brain Res, 2011, 1368: 59-64. [15]Xu Y, Duan Y X, Xu S L, et al. Mild hypothermia therapy attenuates early BBB leakage in acute ischemic stroke[J]. J Cereb Blood Flow Metab, 2025, 45(2): 292-305. [16]Wu L F, Wu D, Yang T, et al. Hypothermic neuroprotection against acute ischemic stroke: the 2019 update[J]. J Cereb Blood Flow Metab, 2020, 40(3): 461-481. [17]De Georgia M A, Krieger D W, Abou-Chebl A, et al. Cooling for acute ischemic brain damage (COOL AID): a feasibility trial of endovascular cooling[J]. Neurology, 2004, 63(2): 312-317. [18]Georgiadis D, Schwarz S, Kollmar R, et al. Endovascular cooling for moderate hypothermia in patients with acute stroke: first results of a novel approach[J]. Stroke, 2001, 32(11): 2550-2553. [19]Yanamoto H, Nagata I, Nakahara I, et al. Combination of intraischemic and postischemic hypothermia provides potent and persistent neuroprotection against temporary focal ischemia in rats[J]. Stroke, 1999, 30(12): 2720-2726, discussion 2726. [20]Kollmar R, Blank T, Han J L, et al. Different degrees of hypothermia after experimental stroke: short-and long-term outcome[J]. Stroke, 2007, 38(5): 1585-1589. [21]Hoedemaekers C W, Ezzahti M, Gerritsen A, et al. Comparison of cooling methods to induce and maintain normo-and hypothermia in intensive care unit patients: a prospective intervention study[J]. Critical Care, 2007, 11(4): R91. [22]Wu D, Chen J, Hussain M, et al. Selective intra-arterial brain cooling improves long-term outcomes in a non-human primate model of embolic stroke: efficacy depending on reperfusion status[J]. J Cereb Blood Flow Metab, 2020, 40(7): 1415-1426. [23]Wu C J, Huber C, Huber M, et al. Regional cerebral infusion for acute ischemic stroke[J]. Brain Circ, 2019, 5(4): 241-243. [24]Chen J, Liu L Q, Zhang H Q, et al. Endovascular hypothermia in acute ischemic stroke: pilot study of selective intra-arterial cold saline infusion[J]. Stroke, 2016, 47(7): 1933-1935. [25]Wu C J, Zhao W B, An H, et al. Safety, feasibility, and potential efficacy of intraarterial selective cooling infusion for stroke patients treated with mechanical thrombectomy[J]. J Cereb Blood Flow Metab, 2018, 38(12): 2251-2260. [26]Citerio G, Oddo M, Taccone F S. Recommendations for the use of multimodal monitoring in the neurointensive care unit[J]. Curr Opin Crit Care, 2015, 21(2): 113-119. [27]Nguyen P L, Alreshaid L, Poblete R A, et al. Targeted temperature management and multimodality monitoring of comatose patients after cardiac arrest[J]. Front Neurol, 2018, 9: 768. [28]Chen S Y, Lachance B B, Gao L, et al. Targeted temperature management and early neuro-prognostication after cardiac arrest[J]. J Cereb Blood Flow Metab, 2021, 41(6): 1193-1209. [29]Rohaut B, Calligaris C, Hermann B, et al. Multimodal assessment improves neuroprognosis performance in clinically unresponsive critical-care patients with brain injury[J]. Nat Med, 2024, 30(8): 2349-2355. [30]Ong C S, Etchill E, Dong J, et al. Neuromonitoring detects brain injury in patients receiving extracorporeal membrane oxygenation support[J]. J Thorac Cardiovasc Surg, 2023, 165(6): 2104-2110, e1. [31]Cho S M, Hwang J, Chiarini G, et al. Neurological monitoring and management for adult extracorporeal membrane oxygenation patients: extracorporeal life support organization consensus guidelines[J]. Crit Care, 2024, 28(1): 296. [32]Xia W P, Ai M L, Ma X H, et al. Application of high-quality targeted temperature management guided by multimodal brain monitoring in brain protection of patients with cardiac arrest: a case series[J]. Medicine, 2024, 103(51): e40943. [33]Heusch G, Bøtker H E, Przyklenk K, et al. Remote ischemic conditioning[J]. J Am Coll Cardiol, 2015, 65(2): 177-195. [34]Hoda M N, Siddiqui S, Herberg S, et al. Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke[J]. Stroke, 2012, 43(10): 2794-2799. [35]Ren C H, Gao M Q, Dornbos D, 3rd. et al. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury[J]. Neurol Res, 2011, 33(5): 514-519. [36]Ren C H, Wang P C, Wang B, et al. Limb remote ischemic per-conditioning in combination with post-conditioning reduces brain damage and promotes neuroglobin expression in the rat brain after ischemic stroke[J]. Restor Neurol Neurosci, 2015, 33(3): 369-379. [37]Hougaard K D, Hjort N, Zeidler D, et al. Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial[J]. Stroke, 2014, 45(1): 159-167. [38]Pico F, Lapergue B, Ferrigno M, et al. Effect of in-hospital remote ischemic perconditioning on brain infarction growth and clinical outcomes in patients with acute ischemic stroke: the RESCUE BRAIN randomized clinical trial[J]. JAMA Neurol, 2020, 77(6): 725-734. [39]Blauenfeldt R A, Hjort N, Valentin J B, et al. Remote ischemic conditioning for acute stroke: the RESIST randomized clinical trial[J]. JAMA, 2023, 330(13): 1236-1246. [40]Zhao W B, Che R W, Li S J, et al. Remote ischemic conditioning for acute stroke patients treated with thrombectomy[J]. Ann Clin Transl Neurol, 2018, 5(7): 850-856. [41]Purroy F, Arqué G, Jiménez-Fàbrega X, et al. Prehospital application of remote ischaemic perconditioning in acute ischaemic stroke patients in Catalonia: the REMOTE-CAT clinical trial[J]. EClinicalMedicine, 2025, 83: 103208. [42]Guo Z N, Abuduxukuer R, Wang C, et al. Remote ischaemic conditioning improves outcomes of ischaemic stroke treated by endovascular thrombectomy: the SERIC-EVT trial[J/OL]. Eur Heart J,(2025-08-12)[2025-11-01]. https://pubmed.ncbi.nlm.nih.gov/40796242/. [43]Wu L F, Wei M, Zhang B H, et al. Safety and tolerability of direct ischemic postconditioning following thrombectomy for acute ischemic stroke[J]. Stroke, 2023, 54(9): 2442-2445. [44]Deng J S, He G C, Yi T Y, et al. Neuroprotective effects of rapid local ischemic postconditioning in successful endovascular thrombectomy patients[J]. Stroke, 2024, 55(12): 2896-2900. [45]Awasthi V A, Dhankar V, Singh S. Novel therapeutic targets for reperfusion injury in ischemic stroke: understanding the role of mitochondria, excitotoxicity and ferroptosis[J]. Vascul Pharmacol, 2024, 156: 107413. [46]Malone K, Amu S, Moore A C, et al. The immune system and stroke: from current targets to future therapy[J]. Immunol Cell Biol, 2019, 97(1): 5-16. [47]Lin L, Wang X, Yu Z. Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies[J]. Biochem Pharmacol, 2016, 5(4): 213. [48]Savitz S I, Fisher M. Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials[J]. Ann Neurol, 2007, 61(5): 396-402. [49]Tymianski M. Combining neuroprotection with endovascular treatment of acute stroke: is there hope?[J]. Stroke, 2017, 48(6): 1700-1705. [50]Zhu Z L, Fu Y, Tian D C, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial[J]. Circulation, 2015, 132(12): 1104-1112. [51]Hernández-Jiménez M, Abad-Santos F, Cotgreave I, et al. Safety and efficacy of ApTOLL in patients with ischemic stroke undergoing endovascular treatment: a phase 1/2 randomized clinical trial[J]. JAMA Neurol, 2023, 80(8): 779-788. [52]MARVEL Trial Authors for the MARVEL Investigators. Methylprednisolone as adjunct to endovascular thrombectomy for large-vessel occlusion stroke: the MARVEL randomized clinical trial[J]. JAMA, 2024, 331(10): 840-849. [53]Elkins J, Veltkamp R, Montaner J, et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial[J]. Lancet Neurol, 2017, 16(3): 217-226. [54]Elkind M S V, Veltkamp R, Montaner J, et al. Natalizumab in acute ischemic stroke (ACTION II): a randomized, placebo-controlled trial[J]. Neurology, 2020, 95(8): e1091-e1104. [55]European Stroke Organisation. Session report: closing ceremony and large clinical trials[EB/OL]. (2025-05-26)[2025-11-01]. https://eso-stroke.org/closing-ceremony-and-large-clinical-trials/. [56]Mayer M L, Westbrook G L, Guthrie P B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones[J]. Nature, 1984, 309(5965): 261-263. [57]Lin J Y, Chung S Y, Lin M C, et al. Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique[J]. Life Sci, 2002, 71(7): 803-811. [58]Zhang H K, Zhang Y, Sheng L L, et al. Mechanically robust neuroprotective stent by sequential Mg ions release for ischemic stroke therapy[J]. Nat Commun, 2025, 16(1): 6557. [59]Saver J L, Starkman S. Magnesium in clinical stroke[M]//Vink R, Nechifor M. Magnesium in the Central Nervous System. Adelaide: University of Adelaide Press, 2011. [60]Dubé L, Granry J C. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: a review[J]. Can J Anaesth, 2003, 50(7): 732-746. [61]Saver J L, Starkman S, Eckstein M, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke[J]. N Engl J Med, 2015, 372(6): 528-536. [62]Li W L, Lan J, Wei M, et al. Normobaric hyperoxia combined with endovascular treatment for acute ischaemic stroke in China (OPENS-2 trial): a multicentre, randomised, single-blind, sham-controlled trial[J]. Lancet, 2025, 405(10477): 486-497. [63]Defazio R A, Zhao W Z, Deng X L, et al. Albumin therapy enhances collateral perfusion after laser-induced middle cerebral artery branch occlusion: a laser speckle contrast flow study[J]. J Cereb Blood Flow Metab, 2012, 32(11): 2012-2022. [64]Park H P, Nimmagadda A, DeFazio R A, et al. Albumin therapy augments the effect of thrombolysis on local vascular dynamics in a rat model of arteriolar thrombosis: a two-photon laser-scanning microscopy study[J]. Stroke, 2008, 39(5): 1556-1562. |
| [1] | 郭宇, 陈伟观, 周三连, 汤莉巧, 孙王妍, 张冬梅, 卢红建. 急性缺血性脑卒中患者血清糖蛋白非转移性黑色素瘤蛋白B蛋白浓度与疾病严重度及预后的相关性分析[J]. 首都医科大学学报, 2025, 46(4): 702-709. |
| [2] | 任倩薇, 周思怡, 金鑫悦, 郭馥祯, 管仲军. 城市社区居民卒中相关影响因素分析:基于倾向评分匹配的病例对照研究[J]. 首都医科大学学报, 2025, 46(3): 520-526. |
| [3] | 字晓慧, 夏雪, 李静, 张晓丽, 周全, 王安心, 王伊龙. 抗血小板治疗在静脉溶栓卒中患者中的应用研究进展[J]. 首都医科大学学报, 2025, 46(2): 234-242. |
| [4] | 董 晓, 张婉莹, 吉训明, 吴川杰. 《2024年美国心脏学会/美国卒中学会卒中一级预防指南》概述[J]. 首都医科大学学报, 2025, 46(1): 1-5. |
| [5] | 褚学红, 申英杰, 王耀楼, 董 晓, 刘圆圆, 冯 艳, 姜缪文, 李 明, 吉训明, 吴川杰. 基于孟德尔随机化探索广泛的血管周围间隙负荷与缺血性卒中及其亚型和短暂性脑缺血发作的因果关系[J]. 首都医科大学学报, 2025, 46(1): 22-33. |
| [6] | 王银平, 孟灿灿, 吴文娟, 杨直堂. CD62P、CD40L及节律核受体Rev-erbα在缺血性脑卒中不同发病时间的表达[J]. 首都医科大学学报, 2025, 46(1): 34-40. |
| [7] | 詹艳丽, 李一吟, 李 平, 孙景萍, 黄良通, 蔡学礼. 基于区域卒中分级诊疗网络救治急性缺血性脑卒中的现状及疗效分析[J]. 首都医科大学学报, 2025, 46(1): 41-47. |
| [8] | 刘肖朦, 周绍娟, 邵小红, 徐文平, 宦 峰, 朱向阳. 南通市医防协同管理模式下脑卒中现状及四级预防[J]. 首都医科大学学报, 2025, 46(1): 63-67. |
| [9] | 乔 玥, 李传辉, 赵文博. 急性缺血性脑卒中的再灌注治疗的现状与未来[J]. 首都医科大学学报, 2025, 46(1): 68-70. |
| [10] | 安 琪, 杨 楠, 朱玥荃, 师文娟, 黄敏琪, 赵咏梅. 自噬抑制剂3-MA对脑缺血再灌注损伤大鼠脑内炎症反应的影响[J]. 首都医科大学学报, 2024, 45(6): 1008-1015. |
| [11] | 李亚堃, 李 蔚, 杨雪琦, 师文娟, 朱玥荃, 赵咏梅. 活性氧自由基清除剂EUK-134对脑缺血再灌注损伤大鼠线粒体相关蛋白PGC-1α和VDAC1的影响[J]. 首都医科大学学报, 2024, 45(6): 1016-1022. |
| [12] | 刘 扬, 高 超, 王小杰, 张 梁, 吴安石. 瑞马唑仑和丙泊酚麻醉对脑血管内手术的老年患者术后谵妄的影响[J]. 首都医科大学学报, 2024, 45(6): 1023-1028. |
| [13] | 李兴茂, 李 秀, 王 婷, 赵 鑫, 王德杨, 商海燕, 赵咏梅, 李 森. GLP-1 受体激动剂对 2 型糖尿病患者急性缺血性脑卒中后认知功能的影响[J]. 首都医科大学学报, 2024, 45(6): 1029-1037. |
| [14] | 沈 童, 李芳芳, 范俊芬, 罗玉敏. 外周血Yes相关蛋白与缺血性卒中预后影响因素及卒中后炎性反应指标的相关性分析[J]. 首都医科大学学报, 2024, 45(6): 1071-1078. |
| [15] | 梁发, 吴侑煊, 王鑫焱, 菅敏钰, 刘海洋, 韩如泉. 全身麻醉转化对急性脑卒中患者机械取栓术后神经功能的影响[J]. 首都医科大学学报, 2023, 44(2): 237-243. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||