首都医科大学学报 ›› 2024, Vol. 45 ›› Issue (2): 348-355.doi: 10.3969/j.issn.1006-7795.2024.02.024

• 临床研究 • 上一篇    下一篇

蛛网膜下腔出血院内病死率的预测模型

庹  琳1,  包小源2*   

  1. 1.北京大学医学部医院管理处, 北京 100191;2.北京大学医学部临床医学高等研究院医学信息学中心, 北京 100191
  • 收稿日期:2024-02-23 出版日期:2024-04-21 发布日期:2024-04-25
  • 通讯作者: 包小源 E-mail:xybao@pku.edu.cn

A risk model to predict the in-hospital mortality of subarachnoid hemorrhage

Tuo Lin1, Bao Xiaoyuan2*   

  1. 1.Hospital Management Department, Peking University Health Science Center, Beijing 100191, China;2.Medical Informatics Center, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
  • Received:2024-02-23 Online:2024-04-21 Published:2024-04-25

摘要: 目的  蛛网膜下腔出血是一种很严重的疾病,有着较高的致死率和致残率。本研究旨在研发一种模型预测蛛网膜下腔出血的院内病死率。方法  本研究数据来自于2014年至2018年就诊于北京大学10所附属医院的患者的相关资料,最终纳入797例诊断为蛛网膜下腔出血的患者。采用单变量和多变量Logistic回归,探究影响蛛网膜下腔出血预后的影响因素,用列线图来预测院内病死率。结果  在纳入的患者中,院内病死率为7.53%。影响因素包括动脉瘤、心脏病、脑疝、脑内血肿、昏迷、肺部感染、呼吸衰竭和肺炎(P值均<0.05)。预测模型的曲线下面积为0.860 (95%CI:0.809~0.911)。结论  本研究构建了一个能够预测蛛网膜下腔患者的院内病死率的模型。

关键词: 蛛网膜下腔出血, 列线图, 院内病死率, 风险模型

Abstract: Objective  Subarachnoid hemorrhage is a severe disease with high mortality and disability rate. The aim of this study is to develop a model to predict the in-hospital mortality of subarachnoid hemorrhage. Methods  Seven hundred and ninty-seven patients with subarachnoid hemorrhage are extracted from 10 hospitals affiliated to Peking University during a 5-year period (2014-2018). A univariate Logistic regression and a multivariate Logistic regression are used to find the predictive factors for subarachnoid hemorrhage. A nomogram was constructed to predict the mortality. Results  Of the included patients, the mortality rate is 7.53%. The predictors are aneurysm, heart disease, brain herniation, intracerebral hematoma, coma, pulmonary infection, respiratory failure and pneumonia (P<0.05). The area under the curve of the nomogram is 0.860 (95%CI:0.809-0.911). Conclusion  An accurate nomogram is developed to predict the in-hospital mortality of patients with subarachnoid hemorrhage. It will help reduce the mortality rates.

Key words: subarachnoid hemorrhage, nomogram, hospital mortality, risk model

中图分类号: