[1]Cui Q L, Du X X, Chang I Y M, et al. Striatal direct pathway targets Npas1+ pallidal neurons[J]. J Neurosci, 2021, 41(18): 3966-3987.
[2]Shiflett M W, Balleine B W. Molecular substrates of action control in cortico-striatal circuits[J]. Prog Neurobiol, 2011, 95(1): 1-13.
[3]Gagnon D, Petryszyn S, Sanchez M G, et al. Striatal neurons expressing D(1) and D(2)receptors are morphologically distinct and differently affected by dopamine denervation in mice[J]. Sci Rep, 2017, 7(41432): 1-16.
[4]Gritton H J, Howe W M, Romano M F, et al. Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement[J]. Nat Neurosci, 2019, 22(4): 586-597.
[5]Kravitz A V, Freeze B S, Parker P R L, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry[J]. Nature, 2010, 466(7306): 622-626.
[6]Beck G, Singh A, Papa S M. Dysregulation of striatal projection neurons in Parkinson's disease[J]. J Neural Transm (Vienna), 2018, 125(3): 449-460.
[7]Bariselli S, Fobbs W C, Creed M C, et al. A competitive model for striatal action selection[J]. Brain Res, 2019, 1713: 70-79.
[8]Foster N N, Barry J, Korobkova L, et al. The mouse cortico-basal ganglia-thalamic network[J]. Nature, 2021, 598(7879): 188-194.
[9]Arber S, Costa R M. Networking brainstem and basal ganglia circuits for movement[J]. Nat Rev Neurosci, 2022, 23(6): 342-360.
[10]Lee K, Masmanidis S C. Aberrant features of in vivo striatal dynamics in Parkinson's disease[J]. J Neurosci Res, 2019, 97(12): 1678-1688.
[11]Tecuapetla F, Jin X, Lima S Q, et al. Complementary contributions of striatal projection pathways to action initiation and execution[J]. Cell, 2016, 166(3): 703-715.
[12]Fobbs W C, Bariselli S, Licholai J A, et al. Continuous representations of speed by striatal medium spiny neurons[J]. J Neurosci, 2020, 40(8): 1679-1688.
[13]Han C Y, Guo L, Yang Y, et al. Study on antrodia camphorata polysaccharide in alleviating the neuroethology of PD mice by decreasing the expression of NLRP3 inflammasome[J]. Phytother Res, 2019, 33(9): 2288-2297.
[14]Alcacer C, Andreoli L, Sebastianutto I, et al. Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy[J]. J Clin Invest, 2017, 127(2): 720-734.
[15]Yttri E A, Dudman J T. Opponent and bidirectional control of movement velocity in the basal ganglia[J]. Nature, 2016, 533(7603): 402-406.
[16]Taverna S, Ilijic E, Surmeier D J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease[J]. J Neurosci, 2008, 28(21): 5504-5512.
[17]Cui G H, Jun S B, Jin X, et al. Concurrent activation of striatal direct and indirectpathways during action initiation[J]. Nature, 2013, 494(7436): 238-242.
[18]Bartholomew R A, Li H F, Gaidis E J, et al. Striatonigral control of movement velocity in mice[J]. Eur J Neurosci, 2016, 43(8): 1097-1110.
[19]Cazorla M, de Carvalho F D, Chohan M O, et al. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry[J]. Neuron, 2014, 81(1): 153-164.
|