首都医科大学学报 ›› 2025, Vol. 46 ›› Issue (2): 296-305.doi: 10.3969/j.issn.1006-7795.2025.02.016
郭金鑫,贾安娜,战世佳,张瑶,张璇,郭永丽,常艳*
收稿日期:2024-04-12
出版日期:2025-04-21
发布日期:2025-04-14
通讯作者:
常艳
E-mail:changyan809@126.com
基金资助:Guo Jinxin, Jia Anna, Zhan Shijia, Zhang Yao, Zhang Xuan, Guo Yongli, Chang Yan*
Received:2024-04-12
Online:2025-04-21
Published:2025-04-14
Supported by:摘要: 目的 探究核糖体生物合成因子BMS1在神经母细胞瘤(neuroblastoma, NB)细胞增殖中的功能及潜在机制。方法 通过R2数据库分析BMS1表达与NB患儿临床特征的相关性;实时荧光定量聚合酶链式反应(real-time quantitative polymerase chain reaction, RT-qPCR)检测人神经母细胞瘤细胞SK-N-BE(2)、BE(2)-C、IMR-32和正常细胞hTERT RPE-1(人永生化视网膜上皮细胞)、IMR-90(人胚肺成纤维细胞)中BMS1 mRNA水平。利用小分子干扰RNA(small interfering RNA, siRNA)靶向瞬时敲低NB细胞SK-N-BE(2)、BE(2)-C和正常细胞hTERT RPE-1中BMS1 mRNA的表达,RT-qPCR检测BMS1敲低效果及细胞内MYCN mRNA和p53 mRNA水平,并通过结晶紫染色、实时无标记动态细胞分析技术(real time cellular analysis, RTCA)、克隆形成实验、免疫荧光等实验检测细胞增殖活性。结果 分析R2数据库中 GSE85047(NRC-283)和Westermann-144数据集发现BMS1在MYCN基因扩增的NB样本中表达水平显著高于MYCN基因非扩增的NB样本(P<0.05),且BMS1高表达的NB患儿总体生存率显著降低(P<0.05)。BMS1在NB细胞SK-N-BE(2)、BE(2)-C、IMR-32的mRNA表达水平显著高于正常细胞hTERT RPE-1、IMR-90(P<0.05)。靶向瞬时敲低NB细胞SK-N-BE(2)和BE(2)-C内BMS1导致细胞内MYCN mRNA表达水平下降(P<0.05),细胞的增殖能力和克隆形成能力显著下降(P<0.05),免疫荧光结果显示细胞增殖标志物Ki-67的表达量显著减少(P<0.05)。此外,与对照组相比,SK-N-BE(2)和BE(2)-C细胞中BMS1敲低组(siBMS1-1#和siBMS1-2#)的p53 mRNA水平显著升高(P<0.05)。然而,在正常细胞hTERT RPE-1内敲低BMS1,对细胞增殖无显著影响。结论 BMS1在MYCN基因扩增的NB样本中表达上调,且BMS1高表达的NB患儿预后较差;干扰BMS1的表达可转录激活NB细胞内p53从而抑制NB细胞增殖。BMS1能够促进NB的增殖,有望成为NB潜在治疗靶点,尤其是MYCN基因扩增型NB。
中图分类号:
郭金鑫, 贾安娜, 战世佳, 张瑶, 张璇, 郭永丽, 常艳. 核糖体生物合成因子BMS1对神经母细胞瘤细胞增殖的影响[J]. 首都医科大学学报, 2025, 46(2): 296-305.
Guo Jinxin, Jia Anna, Zhan Shijia, Zhang Yao, Zhang Xuan, Guo Yongli, Chang Yan. Effect of the ribosome biogenesis factor BMS1 on proliferation of neuroblastoma cells[J]. Journal of Capital Medical University, 2025, 46(2): 296-305.
| [1]Ambros I M, Tonini G P, Pötschger U, et al. Age dependency of the prognostic impact of tumor genomics in localized resectable MYCN-Nonamplified neuroblastomas. report from the SIOPEN biology group on the LNESG trials and a COG validation group[J]. J Clin Oncol, 2020, 38(31): 3685-3697. [2]Bosse K R, Maris J M. Advances in the translational genomics of neuroblastoma: from improving risk stratification and revealing novel biology to identifying actionable genomic alterations[J]. Cancer, 2016, 122(1): 20-33. [3]Epp S, Chuah S M, Halasz M. Epigenetic dysregulation in MYCN-amplified neuroblastoma[J]. Int J Mol Sci, 2023, 24(23): 17085. [4]Cohn S L, Pearson A D J, London W B, et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report[J]. J Clin Oncol, 2009, 27(2): 289-297. [5]Matthay K K, Maris J M, Schleiermacher G, et al. Neuroblastoma[J]. Nat Rev Dis Primers, 2016, 2: 16078. [6]Qiu B, Matthay K K. Advancing therapy for neuroblastoma[J]. Nat Rev Clin Oncol, 2022, 19(8): 515-533. [7]Maris J M. Recent advances in neuroblastoma[J]. N Engl J Med, 2010, 362(23): 2202-2211. [8]Berlanga P, Cañete A, Castel V. Advances in emerging drugs for the treatment of neuroblastoma[J]. Expert Opin Emerg Drugs, 2017, 22(1): 63-75. [9]Wegierski T, Billy E, Nasr F, et al. Bms1p,a G-domain-containing protein,associates with Rcl1p and is required for 18S rRNA biogenesis in yeast[J]. RNA, 2001, 7(9): 1254-1267. [10]Karbstein K, Jonas S, Doudna J A. An essential GTPase promotes assembly of preribosomal RNA processing complexes[J]. Mol Cell, 2005, 20(4): 633-643. [11]Wang Y, Zhao Z Y, Yu H Y, et al. Stability and function of RCL1 are dependent on the interaction with BMS1[J]. J Mol Cell Biol, 2024, 15(7): mjad046. [12]Pérez-Fernández J, Martín-Marcos P, Dosil M. Elucidation of the assembly events required for the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes[J]. Nucleic Acids Res, 2011, 39(18): 8105-8121. [13]Kornprobst M, Turk M, Kellner N, et al. Architecture of the 90S pre-ribosome: a structural wiew on the birth of the eukaryotic ribosome[J]. Cell, 2016, 166(2): 380-393. [14]Wang Y, Luo Y, Hong Y H, et al. Ribosome biogenesis factor Bms1-like is essential for liver development in zebrafish[J]. J Genet Genomics, 2012, 39(9): 451-462. [15]Yanan W, Wenyong Z, Ze L, et al. Identification of genes and pathways in human antigen-presenting cell subsets in response to polio vaccine by bioinformatical analysis[J]. J Med Virol, 2019, 91(10): 1729-1736. [16]Wang J, Yin Y, Lu Q, et al. Identification of important modules and hub gene in chronic kidney disease based on WGCNA[J]. J Immunol Res, 2022, 2022: 4615292. [17]Shao J M, Wang S H, West-Szymanski D, et al. Cell-free DNA 5-hydroxymethylcytosine is an emerging marker of acute myeloid leukemia[J]. Sci Rep, 2022, 12(1): 12410. [18]Suh Y J, Choe J Y, Park H J. Malignancy in pheochromocytoma or paraganglioma: integrative analysis of 176 cases in TCGA[J]. Endocr Pathol, 2017, 28(2): 159-164. [19]Zafar A, Wang W, Liu G, et al. Molecular targeting therapies for neuroblastoma: Progress and challenges[J]. Med Res Rev, 2021, 41(2): 961-1021. [20]Gundem G, Levine M F, Roberts S S, et al. Clonal evolution during metastatic spread in high-risk neuroblastoma[J]. Nat Genet, 2023, 55(6): 1022-1033. [21]Tan J, McLoone J K, Wakefield C E, et al. Neuroblastoma survivors' self-reported late effects, quality of life, health-care use, and risk perceptions[J]. Palliat Support Care, 2024, 22(2): 296-305. [22]Lane D P. Cancer. p53, guardian of the genome[J]. Nature, 1992, 358(6381): 15-16. [23]Bieging K T, Mello S S, Attardi L D. Unravelling mechanisms of p53-mediated tumour suppression[J]. Nat Rev Cancer, 2014, 14(5): 359-370. [24]Stein Y, Rotter V, Aloni-Grinstein R. Gain-of-function mutant p53: all the roads lead to tumorigenesis[J]. Int J Mol Sci, 2019, 20(24): 6197. [25]Patel K R, Patel H D. p53: an attractive therapeutic target for cancer[J]. Curr Med Chem, 2020, 27(22): 3706-3734. [26]Carr-Wilkinson J, O'Toole K, Wood K M, et al. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma[J]. Clin Cancer Res, 2010, 16(4): 1108-1118. [27]Maehama T, Nishio M, Otani J, et al. Nucleolar stress: molecular mechanisms and related human diseases[J]. Cancer Sci, 2023, 114(5): 2078-2086. [28]Hannan K M, Soo P, Wong M S, et al. Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway[J]. Cell Rep, 2022, 41(5): 111571. [29]Zhu Y Q, Wang Y, Tao B X, et al. Nucleolar GTPase Bms1 displaces Ttf1 from RFB-sites to balance progression of rDNA transcription and replication[J]. J Mol Cell Biol, 2022, 13(12): 902-917. |
| [1] | 杜风, 徐瑞, 赵梦冉, 冀旭, 苏珈仪, 邱煜婷, 朱圣韬, 吴静, 李鹏, 张澍田. SOX4在幽门螺杆菌介导的胃黏膜上皮异型增生中的作用及机制研究[J]. 首都医科大学学报, 2025, 46(4): 644-653. |
| [2] | 刘娟, 张政, 李鹏. 自身免疫性胃炎并发胃早癌的临床特征分析[J]. 首都医科大学学报, 2025, 46(4): 670-675. |
| [3] | 刘红蕾, 杨迎亮, 李荣浩, 朱丛敏, 张旭. 人工智能在肿瘤诊疗研究中的应用[J]. 首都医科大学学报, 2025, 46(3): 395-400. |
| [4] | 高天博, 葛洋, 安广宇, 姚健楠, 蒋玉良, 刘贺书, 闫锐. 分子伴侣Cosmc或T-合酶缺失介导的异常O-糖基化调控结肠癌外泌体中微小RNA的表达[J]. 首都医科大学学报, 2025, 46(3): 401-409. |
| [5] | 刘晓倩, 孙凯, 王晓琳, 赵倩倩, 武笑笑, 沈方琪, 陈曦, 田晨旭, 吴迪, 宋春花, 许红霞, 丛明华, 石汉平, 贾平平. 15种营养/炎症指标对手术后肿瘤患者的预后预测能力比较[J]. 首都医科大学学报, 2025, 46(3): 410-419. |
| [6] | 李亚伟, 杨守博, 尹硕, 李文斌, 陈峰. 海曲泊帕治疗生殖细胞肿瘤治疗后血小板减少症的临床疗效分析[J]. 首都医科大学学报, 2025, 46(3): 420-426. |
| [7] | 王庆莲, 滕颖, 乔文赢, 陈京龙, 丁晓燕. 比较不同方案治疗艾滋病相关伯基特淋巴瘤的疗效和安全性分析:一项单中心回顾性研究[J]. 首都医科大学学报, 2025, 46(3): 427-435. |
| [8] | 汪婧雯, 李振军, 吕亮成, 姚晓雨, 丁宁. B细胞受体信号通路在B细胞淋巴瘤中的作用及靶向治疗策略[J]. 首都医科大学学报, 2025, 46(3): 436-441. |
| [9] | 蒋海萍, 尹硕, 李生兰, 李文斌. 中性粒细胞在胶质瘤中的作用及应用研究进展[J]. 首都医科大学学报, 2025, 46(3): 448-454. |
| [10] | 靖芳, 靖超. 微小RNA-338-3p通过ERBB2调节卵巢癌细胞的增殖、凋亡、迁移及侵袭[J]. 首都医科大学学报, 2025, 46(3): 527-537. |
| [11] | 杨佩仪, 段超, 王生才, 金眉, 张大伟, 伏利兵, 于彤, 刘志凯, 马晓莉, 倪鑫, 苏雁. 单中心儿童头颈部恶性实体肿瘤临床特征及预后分析[J]. 首都医科大学学报, 2025, 46(3): 545-552. |
| [12] | 孟令照, 曲晓鹏, 陶鹏宇, 杨帆, 饶远生, 王茹, 房居高. 低温等离子双极镊在甲状腺癌手术中的应用价值[J]. 首都医科大学学报, 2025, 46(3): 553-558. |
| [13] | 石峰, 赵艳杰, 高颖, 宋清坤. 肿瘤浸润免疫细胞CD38表达对淋巴结转移食管鳞状细胞癌预后的影响[J]. 首都医科大学学报, 2025, 46(2): 210-215. |
| [14] | 范云鹏, 熊天宇, 杨坤, 刘占良, 靳松, 谢萍, 牛亦农. 基于MRI及临床指标的前列腺被膜外侵犯预测模型[J]. 首都医科大学学报, 2025, 46(2): 243-251. |
| [15] | 熊天宇, 赵有权, 谢萍, 牛亦农. 雄激素受体与PI3K/AKT通路相互作用机制在前列腺癌中的研究进展[J]. 首都医科大学学报, 2025, 46(2): 269-282. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||