首都医科大学学报 ›› 2025, Vol. 46 ›› Issue (5): 924-933.doi: 10.3969/j.issn.1006-7795.2025.05.024
马 薇1, 姜慧敏1, 周一帆1, 张炜月2, 李 慧3, 周 陈1 *#, 吉训明1,3 *#
收稿日期:2025-04-14
修回日期:2025-05-12
出版日期:2025-10-21
发布日期:2025-10-22
通讯作者:
周 陈, 吉训明
E-mail:chenzhou2013abc@163.com; jixm@ccmu.edu.com
Ma Wei 1,Jiang Huimin 1,Zhou Yifan 1,Zhang Weiyue 2,Li Hui 3,Zhou Chen1*# , Ji Xunming1,3 *#
Received:2025-04-14
Revised:2025-05-12
Online:2025-10-21
Published:2025-10-22
摘要: 心血管疾病是全球范围内造成死亡的最主要原因,其核心病理改变动脉粥样硬化(atherosclerosis,AS)是一种多因素驱动的慢性炎症性疾病。AS发病机制涉及脂代谢紊乱、炎症反应与斑块易损性等多重病理环节,其复杂性要求动物模型需精准模拟特定病理特征。基因工程小鼠凭借遗传背景可编辑性、表型可追踪性及与人类病理的分子保守性,成为解析AS机制的核心工具。本文将对主要AS小鼠模型构建方法进行概述,重点分析饮食诱导、遗传修饰及物理损伤等不同的建模方法在模拟病理特征和表型稳定性方面的效果。
中图分类号:
马 薇, 姜慧敏, 周一帆, 张炜月, 李 慧, 周 陈, 吉训明. 动脉粥样硬化小鼠模型研究进展[J]. 首都医科大学学报, 2025, 46(5): 924-933.
Ma Wei , Jiang Huimin , Zhou Yifan , Zhang Weiyue , Li Hui , Zhou Chen , Ji Xunming. Research progress in mouse model of atherosclerosis[J]. Journal of Capital Medical University, 2025, 46(5): 924-933.
| [1] Libby P, Ridker P M, Hansson G K, et al. Inflammation in atherosclerosis: from pathophysiology to practice[J]. J Am Coll Cardiol, 2009, 54(23): 2129-2138. [2] Libby P, Buring J E, Badimon L, et al. Atherosclerosis[J]. Nat Rev Dis Primers, 2019, 5(1): 56. [3] Roth G A, Mensah G A, Johnson C O, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. [4] Moore K J, Sheedy F J, Fisher E A. Macrophages in atherosclerosis: a dynamic balance[J]. Nat Rev Immunol, 2013, 13(10): 709-721. [5] Tabas I, García-Cardeña G, Owens G K. Recent insights into the cellular biology of atherosclerosis[J]. J Cell Biol, 2015, 209(1): 13-22. [6] Finn A V, Nakano M, Narula J, et al. Concept of vulnerable/unstable plaque[J]. Arterioscler Thromb Vasc Biol, 2010, 30(7): 1282-1292. [7] Bentzon J F, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture[J]. Circ Res, 2014, 114(12): 1852-1866. [8] Schoenhagen P, Tuzcu E M, Ellis S G. Plaque vulnerability, plaque rupture, and acute coronary syndromes: (multi)-focal manifestation of a systemic disease process[J]. Circulation, 2002, 106(7): 760-762. [9] Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II [J]. Circulation, 2003, 108(15): 1772-1778. [10] Simon F, Larena-Avellaneda A, Wipper S. Experimental atherosclerosis research on large and small animal models in vascular surgery[J]. J Vasc Res, 2022, 59(4): 221-228. [11] Wu X Z, Pan J X, Yu J J, et al. DiDang decoction improves mitochondrial function and lipid metabolism via the HIF-1 signaling pathway to treat atherosclerosis and hyperlipidemia[J]. J Ethnopharmacol, 2023, 308: 116289. [12] Bu T, Sun Z Y, Pan Y, et al. Glucagon-like peptide-1: new regulator in lipid metabolism[J]. Diabetes Metab J, 2024, 48(3): 354-372. [13] Chen Y C, Bui A V, Diesch J, et al. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling[J]. Circ Res, 2013, 113(3): 252-265. [14] Kühnast S, Fiocco M, Van Der Hoorn J W A, et al. Innovative pharmaceutical interventions in cardiovascular disease: focusing on the contribution of non-HDL-C/LDL-C-lowering versus HDL-C-raising: a systematic review and meta-analysis of relevant preclinical studies and clinical trials[J]. Eur J Pharmacol, 2015, 763(Pt A): 48-63. [15] Dewey F E, Gusarova V, Dunbar R L, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease[J]. N Engl J Med, 2017, 377(3): 211-221. [16] Piedrahita J A, Zhang S H, Hagaman J R, et al. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells[J]. Proc Natl Acad Sci U S A, 1992, 89(10): 4471-4475. [17] Plump A S, Smith J D, Hayek T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells[J]. Cell, 1992, 71(2): 343-353. [18] Zhang Y F, Ding J, Wang Y R, et al. Guanxinkang decoction attenuates the inflammation in atherosclerosis by regulating efferocytosis and MAPKs signaling pathway in LDLR-/- mice and RAW264.7 cells[J]. Front Pharmacol, 2021, 12: 731769. [19] Seguchi M, Aytekin A, Lenz T, et al. Intravascular molecular imaging: translating pathophysiology of atherosclerosis into human disease conditions[J]. Eur Heart J Cardiovasc Imaging, 2022, 24(1): e1-e16. [20] Serruys P W, Kotoku N, Nørgaard B L, et al. Computed tomographic angiography in coronary artery disease[J]. EuroIntervention, 2023, 18(16): e1307-e1327. [21] Oppi S, Lüscher T F, Stein S. Mouse models for atherosclerosis research-which is my line?[J]. Front Cardiovasc Med, 2019, 6: 46. [22] Von Scheidt M, Zhao Y Q, Kurt Z, et al. Applications and limitations of mouse models for understanding human atherosclerosis[J]. Cell Metab, 2017, 25(2): 248-261. [23] 杨宗统, 孙铁锋, 李晓晶, 等. 基于肠道菌群和短链脂肪酸代谢探讨不同饮食条件下高脂血症大鼠发病机制[J]. 中国实验动物学报, 2023, 31(10): 1314-1323. [24] Curtiss L K, Boisvert W A. Apolipoprotein E and atherosclerosis[J]. Curr Opin Lipidol, 2000, 11(3): 243-251. [25] Bouchareychas L, Raffai R L. Apolipoprotein E and atherosclerosis: from lipoprotein metabolism to MicroRNA control of inflammation[J]. J Cardiovasc Dev Dis, 2018, 5(2): 30. [26] Papaioannou I, Simons J P, Owen J S. Targeted in situ gene correction of dysfunctional APOE alleles to produce atheroprotective plasma ApoE3 protein[J]. Cardiol Res Pract, 2012, 2012: 148796. [27] Mahley R W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology[J]. Science, 1988, 240(4852): 622-630. [28] Sehayek E, Shefer S, Nguyen L B, et al. Apolipoprotein E regulates dietary cholesterol absorption and biliary cholesterol excretion: studies in C57BL/6 apolipoprotein E knockout mice[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3433-3437. [29] Emini Veseli B, Perrotta P, De Meyer G R A, et al. Animal models of atherosclerosis[J]. Eur J Pharmacol, 2017, 816: 3-13. [30] 梁璐, 洪瑞云, 周敏, 等. ApoE基因敲除小鼠动脉粥样硬化模型构建[J]. 赣南医学院学报, 2017, 37(3): 337-342, 364. [31] 沈伟, 刘湘绪, 施海明, 等. 一种新型apoE-/-小鼠动脉粥样硬化和心肌梗死双模型的建立[J]. 中西医结合心脑血管病杂志, 2018, 16(17): 2473-2478. [32] Koerner C M, Roberts B S, Neher S B. Endoplasmic reticulum quality control in lipoprotein metabolism[J]. Mol Cell Endocrinol, 2019, 498: 110547. [33] Defesche J C. Low-density lipoprotein receptor-its structure, function, and mutations[J]. Semin Vasc Med, 2004, 4(1): 5-11. [34] Defesche J C, Gidding S S, Harada-Shiba M, et al. Familial hypercholesterolaemia[J]. Nat Rev Dis Primers, 2017, 3: 17093. [35] Ishibashi S, Brown M S, Goldstein J L, et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery[J]. J Clin Invest, 1993, 92(2): 883-893. [36] Ishibashi S, Goldstein J L, Brown M S, et al. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice[J]. J Clin Invest, 1994, 93(5): 1885-1893. [37] Merat S, Casanada F, Sutphin M, et al. Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet[J]. Arterioscler Thromb Vasc Biol, 1999, 19(5): 1223-1230. [38] Moore R E, Kawashiri M A, Kitajima K, et al. Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor[J]. Arterioscler Thromb Vasc Biol, 2003, 23(10): 1914-1920. [39] Zaragoza C, Gomez-Guerrero C, Martin-Ventura J L, et al. Animal models of cardiovascular diseases[J]. J Biomed Biotechnol, 2011, 2011: 497841. [40] Hennig B, Reiterer G, Toborek M, et al. Dietary fat interacts with PCBs to induce changes in lipid metabolism in mice deficient in low-density lipoprotein receptor[J]. Environ Health Perspect, 2005, 113(1): 83-87. [41] Witting P K, Pettersson K, Ostlund-Lindqvist A M, et al. Inhibition by a coantioxidant of aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E and low density lipoprotein receptor gene double knockout mice[J]. FASEB J, 1999, 13(6): 667-675. [42] Véniant M M, Sullivan M A, Kim S K, et al. Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100[J]. J Clin Invest, 2000, 106(12): 1501-1510. [43] Skogsberg J, Dicker A, Rydén M, et al. ApoB100-LDL acts as a metabolic signal from liver to peripheral fat causing inhibition of lipolysis in adipocytes[J]. PLoS One, 2008, 3(11): e3771. [44] La Chica Lhoëst M T, Martínez A, Garcia E, et al. ApoB100 remodeling and stiffened cholesteryl ester core raise LDL aggregation in familial hypercholesterolemia patients[J]. J Lipid Res, 2025, 66(1): 100703. [45] Sier V Q, De Jong A, Quax P H A, et al. Visualization of murine vascular remodeling and blood flow dynamics by ultra-high-frequency ultrasound imaging[J]. Int J Mol Sci, 2022, 23(21): 13298. [46] Tarasco E, Pellegrini G, Whiting L, et al. Phenotypical heterogeneity in responder and nonresponder male ApoE*3Leiden.CETP mice[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(4): G602-G617. [47] Westerterp M, Van Der Hoogt C C, De Haan W, et al. Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice[J]. Arterioscler Thromb Vasc Biol, 2006, 26(11): 2552-2559. [48] Bonthu S, Heistad D D, Chappell D A, et al. Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice[J]. Arterioscler Thromb Vasc Biol, 1997, 17(11): 2333-2340. [49] Ishibashi S, Herz J, Maeda N, et al. The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins[J]. Proc Natl Acad Sci U S A, 1994, 91(10): 4431-4435. [50] Karnik S K, Brooke B S, Bayes-Genis A, et al. A critical role for elastin signaling in vascular morphogenesis and disease[J]. Development, 2003, 130(2): 411-423. [51] Li D Y, Brooke B, Davis E C, et al. Elastin is an essential determinant of arterial morphogenesis[J]. Nature, 1998, 393(6682): 276-280. [52] Wagenseil J E, Ciliberto C H, Knutsen R H, et al. Reduced vessel elasticity alters cardiovascular structure and function in newborn mice[J]. Circ Res, 2009, 104(10): 1217-1224. [53] Lin C J, Staiculescu M C, Hawes J Z, et al. Heterogeneous cellular contributions to elastic laminae formation in arterial wall development[J]. Circ Res, 2019, 125(11): 1006-1018. [54] Kang S W, Baines I C, Rhee S G. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine[J]. J Biol Chem, 1998, 273(11): 6303-6311. [55] Kang S W, Chae H Z, Seo M S, et al. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha[J]. J Biol Chem, 1998, 273(11): 6297-6302. [56] Jin D Y, Chae H Z, Rhee S G, et al. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation[J]. J Biol Chem, 1997, 272(49): 30952-30961. [57] Wang X S, Le Roy I, Nicodeme E, et al. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci[J]. Genome Res, 2003, 13(7): 1654-1664. [58] Fiscella M, Zhang H, Fan S, et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner[J]. Proc Natl Acad Sci U S A, 1997, 94(12): 6048-6053. [59] Zhu Y H, Zhang C W, Lu L, et al. Wip1 regulates the generation of new neural cells in the adult olfactory bulb through p53-dependent cell cycle control[J]. Stem Cells, 2009, 27(6): 1433-1442. [60] Chen Z Y, Yi W W, Morita Y H, et al. Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways[J]. Nat Commun, 2015, 6: 6808. [61] Le Guezennec X, Brichkina A, Huang Y F, et al. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis[J]. Cell Metab, 2012, 16(1): 68-80. [62] Brichkina A, Bulavin D V. WIP-ing out atherosclerosis with autophagy[J]. Autophagy, 2012, 8(10): 1545-1547. [63] Saugstad L F. Optimal foetal growth in the reduction of learning and behaviour disorder and prevention of sudden infant death (SIDS) after the first month[J]. Int J Psychophysiol, 1997, 27(2): 107-121, discussion 123-124. [64] Mizoguchi T, MacDonald B T, Bhandary B, et al. Coronary disease association with ADAMTS7 is due to protease activity[J]. Circ Res, 2021, 129(4): 458-470. [65] Shih D M, Gu L, Xia Y R, et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis[J]. Nature, 1998, 394(6690): 284-287. [66] Zhu Q M, MacDonald B T, Mizoguchi T, et al. Endothelial ARHGEF26 is an angiogenic factor promoting VEGF signalling[J]. Cardiovasc Res, 2022, 118(13): 2833-2846. [67] 黄凌晶, 付春梅, 方代龙, 等. 快速构建不稳定型动脉粥样硬化小鼠模型的方法研究[J]. 中国新药杂志, 2019, 28(3): 346-352. [68] Konstantinov I E, Jankovic G M. Alexander I. Ignatowski: a pioneer in the study of atherosclerosis[J]. Tex Heart Inst J, 2013, 40(3): 246-249. [69] Wissler R W, Eilert M L, Schroeder M A, et al. Production of lipomatous and atheromatous arterial lesions in the albino rat[J]. AMA Arch Pathol, 1954, 57(4): 333-351. [70] Wang J B, Shan S J, Lyu A Q, et al. A novel model of myocardial infarction based on atherosclerosis in mice[J]. Biochem Biophys Res Commun, 2021, 576: 100-107. [71] Whitman S C. A practical approach to using mice in atherosclerosis research[J]. Clin Biochem Rev, 2004, 25(1): 81-93. [72] Zhang S M, Zhu L H, Chen H Z, et al. Corrigendum: interferon regulatory factor 9 is critical for neointima formation following vascular injury[J]. Nat Commun, 2014, 5: 5160. [73] Jin H, Li D Y, Chernogubova E, et al. Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions[J]. Mol Ther, 2018, 26(4): 1040-1055. [74] Akram O N, Bernier A, Petrides F, et al. Beyond LDL cholesterol, a new role for PCSK9[J]. Arterioscler Thromb Vasc Biol, 2010, 30(7): 1279-1281. [75] Denis M, Marcinkiewicz J, Zaid A, et al. Gene inactivation of proprotein convertase subtilisin/Kexin type 9 reduces atherosclerosis in mice[J]. Circulation, 2012, 125(7): 894-901. [76] Bjørklund M M, Hollensen A K, Hagensen M K, et al. Induction of atherosclerosis in mice and hamsters without germline genetic engineering[J]. Circ Res, 2014, 114(11): 1684-1689. [77] Roche-Molina M, Sanz-Rosa D, Cruz F M, et al. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9[J]. Arterioscler Thromb Vasc Biol, 2015, 35(1): 50-59. [78] Peled M, Nishi H, Weinstock A, et al. A wild-type mouse-based model for the regression of inflammation in atherosclerosis[J]. PLoS One, 2017, 12(3): e0173975. [79] Schaar J A, Muller J E, Falk E, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece[J]. Eur Heart J, 2004, 25(12): 1077-1082. [80] Alonso-Herranz L, Albarrán-Juárez J, Bentzon J F. Mechanisms of fibrous cap formation in atherosclerosis[J]. Front Cardiovasc Med, 2023, 10: 1254114. [81] Kolodgie F D, Virmani R, Burke A P, et al. Pathologic assessment of the vulnerable human coronary plaque[J]. Heart, 2004, 90(12): 1385-1391. [82] Adams L D, Geary R L, Li J, et al. Expression profiling identifies smooth muscle cell diversity within human intima and plaque fibrous cap: loss of RGS5 distinguishes the cap[J]. Arterioscler Thromb Vasc Biol, 2006, 26(2): 319-325. [83] Schwartz S M, Galis Z S, Rosenfeld M E, et al. Plaque rupture in humans and mice[J]. Arterioscler Thromb Vasc Biol, 2007, 27(4): 705-713. [84] Theofilis P, Vlachakis P K, Papanikolaou A, et al. Coronary plaque erosion: epidemiology, diagnosis, and treatment[J]. Int J Mol Sci, 2024, 25(11): 5786. [85] Lee-Rueckert M, Escola-Gil J C, Kovanen P T. HDL functionality in reverse cholesterol transport--challenges in translating data emerging from mouse models to human disease[J]. Biochim Biophys Acta, 2016, 1861(7): 566-583. [86] 杨定法, 赵庆宇婧, 颜红娇, 等. 动脉粥样硬化实验动物模型及方法的研究进展[J]. 重庆医学, 2022, 51(16): 2860-2865. [87] 倪坤, 姚坚涛, 胡晨, 等. 小鼠动脉粥样硬化模型研究进展[J]. 血管与腔内血管外科杂志, 2023, 9(1): 74-79. [88] Hartvigsen K, Binder C J, Hansen L F, et al. A diet-induced hypercholesterolemic murine model to study atherogenesis without obesity and metabolic syndrome[J]. Arterioscler Thromb Vasc Biol, 2007, 27(4): 878-885. [89] Getz G S, Reardon C A. Diet and murine atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2006, 26(2): 242-249. [90] Khatana C, Saini N K, Chakrabarti S, et al. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis[J]. Oxid Med Cell Longev, 2020, 2020: 5245308. [91] Hu W H, Han F, Ying L, et al. Recent advances in immunotherapy targeting CETP proteins for atherosclerosis prevention[J]. Hum Vaccin Immunother, 2025, 21(1): 2462466. [92] Zadelaar S, Kleemann R, Verschuren L, et al. Mouse models for atherosclerosis and pharmaceutical modifiers[J]. Arterioscler Thromb Vasc Biol, 2007, 27(8): 1706-1721. [93] Van Den Hoek A M, Van Der Hoorn J W A, Maas A C, et al. APOE*3Leiden.CETP transgenic mice as model for pharmaceutical treatment of the metabolic syndrome[J]. Diabetes Obes Metab, 2014, 16(6): 537-544. [94] Pouwer M G, Pieterman E J, Worms N, et al. Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice[J]. J Lipid Res, 2020, 61(3): 365-375. [95] Ason B, Van Der Hoorn J W A, Chan J, et al. PCSK9 inhibition fails to alter hepatic LDLR, circulating cholesterol, and atherosclerosis in the absence of ApoE[J]. J Lipid Res, 2014, 55(11): 2370-2379. [96] Kühnast S, Van Der Hoorn J W A, Pieterman E J, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin[J]. J Lipid Res, 2014, 55(10): 2103-2112. [97] Landlinger C, Pouwer M G, Juno C, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice[J]. Eur Heart J, 2017, 38(32): 2499-2507.[98] Schuster S, Rubil S, Endres M, et al. Anti-PCSK9 antibodies inhibit pro-atherogenic mechanisms in APOE*3Leiden.CETP mice[J]. Sci Rep, 2019, 9(1): 11079. [99] Suchowerska A K, Stokman G, Palmer J T, et al. A novel, orally bioavailable, small-molecule inhibitor of PCSK9 with significant cholesterol-lowering properties in vivo[J]. J Lipid Res, 2022, 63(11): 100293. [100] Salewskij K, Penninger J M. Blood vessel organoids for development and disease[J]. Circ Res, 2023, 132(4): 498-510. [101] Hernandes M S, Griendling K K. RNA sequencing atherosclerosis data sets: expanding potential therapeutic targets[J]. Circ Res, 2024, 134(11): 1424-1426. [102] Ilyas I, Little P J, Liu Z P, et al. Mouse models of atherosclerosis in translational research[J]. Trends Pharmacol Sci, 2022, 43(11): 920-939. |
| [1] | 马薇, 周一帆, 姜慧敏, 卫慧敏, 周陈, 吉训明. 脑静脉窦血栓形成动物模型研究进展[J]. 首都医科大学学报, 2023, 44(5): 704-714. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||