[1] Ensign L M, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles:The gastrointestinal mucus barriers[J]. Adv Drug Deliv Rev, 2012, 64(6):557-570.
[2] Koo O M, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging:a concise review[J]. Nanomedicine, 2005, 1(3):193-212.
[3] Mathur A B, Gupta V. Silk fibroin-derived nanoparticles for biomedical applications[J]. Nanomedicine, 2010, 5(5):807-820.
[4] Kaminskas L M, Boyd J, Porter C J. Dendrimer pharmacokinetics:the effect of size, structure and surface characteristics on ADME properties[J]. Nanomedicine, 2014, 6(6):1063-1084.
[5] Gao W, Xiao Z, Radovic-Moreno A, et al. Progress in siRNA delivery using multifunctional nanoparticles[J]. Methods Mol Biol, 2010, 629:53-67.
[6] Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers[J]. Beilstein J Org Chem, 2012, 8(23):2091-2099.
[7] Tian L, Bae Y H. Cancer nanomedicines targeting tumor extracellular pH[J]. Colloids Surf B Biointerfaces, 2012, 99:116-126.
[8] Duncan R, Vicent M J. Polymer therapeutics-prospects for 21st century:The end of the beginning[J]. Adv Drug Deliv Rev, 2013, 65(1):60-70.
[9] Marin E, Briceno M I, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs[J]. Int J Nanomed, 2013, 8:3071-3090.
[10] Vakili M, Rafatullah M, Salamatinia B, et al. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater:A review[J]. Carbohydr Polym, 2014,113:115-130.
[11] Yang Y, Wang S, Wang Y, et al. Advances in self-assembled chitosan nanomaterials for drug delivery[J]. Biotechnol Adv, 2014, 32(7):1301-1316.
[12] Elgadir M A, Uddin M S, Ferdosh S, et al. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems:A review[J]. J Food Drug Anal, 2015, 23(4):619-629.
[13] Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery[J]. Int J Biol Macromol, 2015, 72(5):1313-1322.
[14] Wang H, Xu M, Xiong M, et al. Reduction-responsive dithiomaleimide-based nanomedicine with high drug loading and FRET-indicated drug release[J]. Chem Commun:Camb, 2015, 51(23):4807-4810.
[15] Mei L, Zhang Z, Zhao L,et al. Pharmaceutical nanotechnology for oral delivery of anticancer drugs[J]. Adv Drug Deliv Rev, 2013, 65(6):880-890.
[16] Huang P, Cui C Y, Wang Y J, et al. Preparation and evaluation of a liposome of PEG and epirubicin[J]. Journal of Capital Medical University, 2015, 36(2):166-172.
[17] Azzopardi E A, Conlan R S, Whitaker I S. Polymer therapeutics in surgery:the next frontier[J]. J Interdiscip Nanomed, 2016, 1(2):19-29.
[18] Mura S, Bui D T, Couvreur P, et al. Lipid prodrug nanocarriers in cancer therapy[J]. J Control Release, 2015, 208:25-41.
[19] Fay F, Scott C J. Antibody-targeted nanoparticles for cancer therapy[J]. Immunotherapy, 2011, 3(3):381-394.
[20] Cheng Y, Zhao L, Li Y, et al. Design of biocompatible dendrimers for cancer diagnosis and therapy:current status and future perspectives[J]. Chem Soc Rev, 2011, 40(5):2673-2703.
[21] Macewan S R, Callahan D J, Chilkoti A. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery[J]. Nanomedicine, 2010, 5(5):793-806.
[22] Kedar U, Phutane P, Shidhaye S, et al. Advances in polymeric micelles for drug delivery and tumor targeting[J]. Nanomed, 2010, 6(6):714-729.
[23] Prabhu R H, Patravale V B, Joshi M D. Polymeric nanoparticles for targeted treatment in oncology:current insights[J]. Int J Nanomed, 2015, 10(1):1001-1018.
[24] Friberg S, Nystrom A M. Nanomedicine:will it offer possibilities to overcome multiple drug resistance in cancer?[J]. J Biotechnol, 2016, 14(1):1-17.
[25] Agyare E, Kandimalla K. Delivery of Polymeric Nanoparticles to Target Vascular Diseases[J]. J Biomol Res Ther, 2014, 3(1):1-24.
[26] Rubinstein I, Weinberg G L. Nanomedicines for chronic non-infectious arthritis:the clinician 3s perspective[J]. Nanomedicine, 2012, 8(Suppl 1):77-82.
[27] Low S A, Kopecek J. Targeting polymer therapeutics to bone[J]. Adv Drug Deliv Rev, 2012, 64, 1189-1204.
[28] Topete A, Barbosa S, Taboada P. Intelligent micellar polymeric nanocarriers for therapeutics and diagnosis[J]. J Appl Polym Sci, 2015, 132(41):1-18.
[29] Movassaghian S, Merkel O M, Torchilin V P. Applications of Polymer Micelles for Imaging and Drug Delivery[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2015, 7(5):691-707.
[30] Ryvolova M, Chomoucka J, Drbohlavova J, et al. Modern Micro and Nanoparticle-Based Imaging Techniques[J]. Sensors Basel, 2012, 12:14792-14820.
[31] Georgieva J V, Hoekstra D, Zuhorn I S. Smuggling Drugs into the Brain:An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier[J]. Pharmaceutics, 2014, 6(4):557-583.
[32] van O, Tellingen, B. Yetkin-Arik, M C de Gooijer,et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment[J]. Drug Resist Updat, 2015, 19(10):1-12.
[33] Forde E, Devocelle M. Pro-Moieties of Antimicrobial Peptide Prodrugs[J]. Molecules, 2015, 20, 1210-1227.
[34] Ungaro F, d'Angelo I, Miro A, et al. Engineered PLGA nano-and micro-carriers for pulmonary delivery:challenges and promises[J]. J Pharm Pharmacol, 2012, 64, 1217-1235.
[35] Cho Y, Borgens R B. Polymer and nano-technology applications for repair and reconstruction of the central nervous system[J]. Exp Neurol, 2012, 233(1):126-144.
[36] Carballo-Molina O A, Velasco I. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries[J]. Front Cell Neurosci, 2015, 9:1-12.
[37] Islam M A, Firdous J, Choi Y J, et al. Design and application of chitosan microspheres as oral and nasal vaccine carriers:an updated review[J]. Int J Nanomed, 2012, 7(7):6077-6093.
[38] Yatuv R, Robinson M, Dayan-Tarshish I, et al. The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia[J]. Int J Nanomed, 2010, 5(655):581-591.
[39] Yoshitomi T, Nagasaki Y. Nitroxyl radical-containing nanoparticles for novel nanomedicine against oxidative stress injury[J]. Nanomedicine, 2011, 6(3):509-518.
[40] Mei L, Jiang Y, Feng S S. Star-shaped block polymers as a molecular biomaterial for nanomedicine development[J]. Nanomedicine, 2014, 9(1):9-12.
[41] Han S, Li M, Liu X, et al. Construction of amphiphilic copolymer nanoparticles based on gelatin as drug carriers for doxorubicin delivery[J]. Colloids Surf B Biointerfaces, 2013, 102(102c):833-841.
[42] Tan G R, Feng S S, Leong D T. The reduction of anti-cancer drug antagonism by the spatial protection of drugs with PLAeTPGS nanoparticles[J]. Biomaterials, 2014, 35(9):3044-3051.
[43] Alcala-Alcala S, Urban-Morlan Z, Aguilar-Rosas I, et al. A biodegradable polymeric system for peptide-protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process[J]. Int J Nanomed, 2013, 8(13):2141-1251.
[44] Zhang X, Dong Y, Zeng X, et al. The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment[J]. Biomaterials, 2014, 35(6):1932-1943.
[45] Yang J, Xie S X, Huang Y, et al. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice[J]. Nanomedicine:Lond, 2012, 7(9):1297-1309.
[46] Guo L, Zhang H, Wang F, et al. Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system[J]. Int J Nanomed, 2015, 10:4535-4547.
[47] Shieh M J, Hsu C Y, Huang L Y, et al. Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells[J]. J Control Release, 2011, 152(3):418-425.
[48] Zhu H, Chen H, Zeng X, et al. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance[J]. Biomaterials, 2014, 35(7):2391-2400.
[49] Gui L, Zhao M, Wang Y, et al. Synthesis, nano-features, ex vivo anti-platelet aggregation and in vivo antithrombotic activities of poly-a,b-DL-aspartyl-L-arginine[J]. Med Chem Comm, 2012, 3(1):102-108.
[50] Gui L, Zhao M, Wang Y, et al. Synthesis, nanofeatures, in vitro thrombus lysis activity and in vivo thrombolytic activity of poly-a,b-aspartyl-l-alanine[J]. Nanomedicine, 2010, 5(5):703-714.
[51] Chen S, Wang Y, Li S, et al. Poly-a,b-aspartyl-Arg-Gly-Asp-Phe:a novel polymeric nanomedicine[J]. Med Chem Comm, 2015, 6(1):182-186.
[52] Li L, Wu J, Zhao M, et al. Poly-α,β-DL-aspartyl-L-cysteine:A novel nanomaterial having a porous structure, special complexation capability for Pb(II), and selectivity of removing Pb(II)[J]. Chem Res Toxicol, 2012, 25(9):1948-1954.
[53] Zhang H, Wang Y, Zhao M, et al. Synthesis and in vivo lead detoxification evaluation of Poly-α,β-DLaspartyl-L-methionine[J]. Chem Res Toxicol, 2012, 25(2):471-477.
[54] Patil R, Portilla-Arias J, Ding H, et al. Cellular delivery of doxorubicin via pH-Controlled hydrazone linkage using multifunctional nano vehicle based on poly(β-L-Malic Acid)[J]. Int J Mol Sci, 2012, 13(9):11681-11693.
[55] Chen G, Liu J, Yang Y, et al. Preparation of pH-sensitive nanoparticles of poly (methacrylic acid) (PMAA)/poly (vinyl pyrrolidone) (PVP) by ATRP-template miniemulsion polymerization in the aqueous solution[J]. Colloid Polym Sci, 2015, 293(7):2035-2044.
[56] Poh S, Lin J B, Panitch A. Release of anti-inflammatory peptides from thermosensitive nanoparticles with degradable cross-links suppresses pro-inflammatory cytokine production[J]. Biomacromolecules, 2015, 16(4):1191-1200.
[57] Asuman Bozk?r B D. Design and evaluation of hydrophobic Ion-pairing complexation of lysozyme with sodium dodecyl sulfate for improved encapsulation of hydrophilic peptides/proteins by lipid-polymer hybrid nanoparticles[J]. J Nanomed Nanotechnol, 2015, 6(1):259-264.
[58] Malathi S, Nandhakumar P, Pandiyan V, et al. Novel PLGA-based nanoparticles for the oral delivery of insulin[J]. Int J Nanomed, 2015, 10:2207-2218.
[59] Lewis D R, Kamisoglu K, York A W, et al. Polymer-Based Therapeutics:Nanoassemblies and Nanoparticles for management of atherosclerosis[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2011, 3(4):400-420.
[60] Scott D, Rohr J, BaeY. Nanoparticulate formulations of mithramycin analogs for enhanced cytotoxicity[J]. Int J Nanomed, 2011, 6(6):2757-2767.
[61] Cho H, Kwon G S. Polymeric micelles for neoadjuvant cancer therapy and tumor-primed optical Imaging[J]. ACS Nano, 2011, 5(11):8721-8729.
[62] Gao X, Wang B, Wei X, et al. Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer[J]. Int J Nanomed, 2013, 8(1):971.
[63] Kutty R V, Feng S S. Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers[J]. Biomaterials, 2013, 34(38):10160.
[64] Wang B L, Gao X, Men K, et al. Treating acute cystitis with biodegradable micelle-encapsulated quercetin[J]. Int J Nanomed, 2012, 7(5):2239.
[65] Kokuryo D, Nakashima S, Ozaki F, et al. Evaluation of thermo-triggered drug release in intramuscular-transplanted tumors using thermosensitive polymer-modified liposomes and MRI[J]. Nanomedicine, 2015, 11(1):229.
[66] Wei X, Senanayake T H, Warren G, et al. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for targeting of CD44-positive and drug-resistant tumors[J]. Bioconjug Chem, 2013, 24(4):658-668.
[67] Yallapu M M, Ebeling M C, Chauhan N, et al. Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes[J]. Int J Nanomed, 2011, 6(1):2779.
[68] Yan Y, Wang Y J, Wu J H, et al. Studies on anticancer activity of 17-AAG poly-butylcyanoacrylate nanoparticle[J].J Cap Med Univ, 2015, 36(2):178-184.
[69] Shi F, Cui C Y, Wu J H, et al. Evaluation of anti-tumor activity of docetaxel loaded nanostructured lipid carriers with seal oil[J]. J Cap Med Univ, 2015, 36(2):185-191.
[70] Xing L, Cui C Y, Wang Y J, et al. 6-Mercaptopurine/verapamil-mesoporous silica and reversing multidrug resistance[J]. J Cap Med Univ, 2015, 36(2):161-165. |