[1] Jenča D, Melenovsky V, Stehlik J, et al. Heart failure after myocardial infarction: incidence and predictors[J]. ESC Heart Fail, 2021, 8(1): 222-237. [2] Porrello E R, Olson E N. A neonatal blueprint for cardiac regeneration[J]. Stem Cell Res, 2014, 13(3 Pt B): 556-570. [3] Porrello E R, Mahmoud A I, Simpson E, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family[J]. Proc Natl Acad Sci USA, 2013, 110(1): 187-192. [4] Lam N T, Sadek H A. Neonatal heart regeneration: comprehensive literature review[J]. Circulation, 2018, 138(4): 412-423. [5] Porrello E R, Mahmoud A I, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science, 2011, 331(6020): 1078-1080. [6] Notari M, Ventura-Rubio A, Bedford-Guaus S J, et al. The local microenvironment limits the regenerative potential of the mouse neonatal heart[J]. Sci Adv, 2018, 4(5): eaao5553. [7] Darehzereshki A, Rubin N, Gamba L, et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury[J]. Dev Biol, 2015, 399(1): 91-99. [8] Bryant D M, OMeara C C, Ho N N, et al. A systematic analysis of neonatal mouse heart regeneration after apical resection[J]. J Mol Cell Cardiol, 2015, 79: 315-318. [9] Zhu W Q, Zhang E, Zhao M, et al. Regenerative potential of neonatal porcine hearts[J]. Circulation, 2018, 138(24): 2809-2816. [10] Ye L, D'Agostino G, Loo S J, et al. Early regenerative capacity in the porcine heart[J]. Circulation, 2018, 138(24): 2798-2808. [11] 刘晓辉, 赵梓惠, 张洁钰, 等. 新生乳鼠心脏再生模型的建立及初步评价[J]. 心肺血管病杂志, 2014, 33(5): 729-732. [12] Haubner B J, Adamowicz-Brice M, Khadayate S, et al. Complete cardiac regeneration in a mouse model of myocardial infarction[J]. Aging, 2012, 4(12): 966-977. [13] Swirski F K, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease[J]. Nat Rev Immunol, 2018, 18(12): 733-744. [14] Forte E, Panahi M, Baxan N, et al. Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart[J]. J Cell Mol Med, 2021, 25(1): 229-243. [15] Lavine K J, Pinto A R, Epelman S, et al. The macrophage in cardiac homeostasis and disease: JACC macrophage in CVD series (part 4)[J]. J Am Coll Cardiol, 2018, 72(18): 2213-2230. [16] Chen B J, Frangogiannis N G. Immune cells in repair of the infarcted myocardium[J]. Microcirculation, 2017, 24(1): e12305. [17] Frangogiannis N G. Cell biological mechanisms in regulation of the post-infarction inflammatory response[J]. Curr Opin Physiol, 2018, 1: 7-13. [18] Nahrendorf M. Myeloid cells in cardiovascular organs[J]. J Intern Med, 2019, 285(5): 491-502. [19] Vagnozzi R J, Maillet M, Sargent M A, et al. An acute immune response underlies the benefit of cardiac stem cell therapy[J]. Nature, 2020, 577(7790): 405-409. [20] De Couto G. Macrophages in cardiac repair: environmental cues and therapeutic strategies[J]. Exp Mol Med, 2019, 51(12): 1-10. [21] Swirski F K, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease[J]. Nat Rev Immunol, 2018, 18(12): 733-744. [22] Alvarez-Argote S, OMeara C C. The evolving roles of cardiac macrophages in homeostasis, regeneration, and repair[J]. Int J Mol Sci, 2021, 22(15): 7923. [23] Kim S Y, Nair M G. Macrophages in wound healing: activation and plasticity[J]. Immunol Cell Biol, 2019, 97(3): 258-267. [24] Hine A M, Loke P. Intestinal macrophages in resolving inflammation[J]. J Immunol, 2019, 203(3): 593-599. [25] Guillot A, Tacke F. Liver macrophages: old dogmas and new insights[J]. Hepatol Commun, 2019, 3(6): 730-743. [26] Horckmans M, Ring L, Duchene J, et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype[J]. Eur Heart J, 2017, 38(3): 187-197. [27] Frodermann V, Nahrendorf M. Neutrophil-macrophage cross-talk in acute myocardial infarction[J]. Eur Heart J, 2017, 38(3): 198-200. [28] Simões F C, Cahill T J, Kenyon A, et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair[J]. Nat Commun, 2020, 11(1): 600. [29] Bevan L, Lim Z W, Venkatesh B, et al. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish[J]. Cardiovasc Res, 2020, 116(7): 1357-1371. [30] Shiraishi M, Shintani Y, Shintani Y, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart[J]. J Clin Invest, 2016, 126(6): 2151-2166. [31] Daseke MJ 2nd, Tenkorang-Impraim M A A, Ma Y G, et al. Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction[J]. J Mol Cell Cardiol, 2020, 145: 112-121. [32] Ferraro B, Leoni G, Hinkel R, et al. Pro-angiogenic macrophage phenotype to promote myocardial repair[J]. J Am Coll Cardiol, 2019, 73(23): 2990-3002. [33] White I A, Gordon J, Balkan W, et al. Sympathetic reinnervation is required for mammalian cardiac regeneration[J]. Circ Res, 2015, 117(12): 990-994. [34] Mahmoud A I, OMeara C C, Gemberling M, et al. Nerves regulate cardiomyocyte proliferation and heart regeneration[J]. Dev Cell, 2015, 34(4): 387-399. [35] Polizzotti B D, Ganapathy B, Haubner B J, et al. A cryoinjury model in neonatal mice for cardiac translational and regeneration research[J]. Nat Protoc, 2016, 11(3): 542-552. [36] Aurora A B, Porrello E R, Tan W, et al. Macrophages are required for neonatal heart regeneration[J]. J Clin Invest, 2014, 124(3): 1382-1392. [37] Zangi L, Lui K O, Von Gise A, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction[J]. Nat Biotechnol, 2013, 31(10): 898-907. [38] Korsching S, Thoenen H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation[J]. Proc Natl Acad Sci USA, 1983, 80(11): 3513-3516. [39] Kaye M P, Wells D J, Tyce G M. Nerve growth factor-enhanced reinnervation of surgically denervated canine heart[J]. Am J Physiol, 1979, 236(4): H624-H628. |