[1] Schena F P, Nistor I. Epidemiology of IgA nephropathy: a global perspective[J]. Semin Nephrol, 2018, 38(5): 435-442. [2] Kim J K, Kim J H, Lee S C, et al. Clinical features and outcomes of IgA nephropathy with nephrotic syndrome[J]. Clin J Am Soc Nephrol, 2012, 7(3): 427-436. [3] Rovin B H, Adler S G, Barratt J, et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases[J]. Kidney Int, 2021 ,100(4):753-779. [4] Barbour S J, Coppo R, Zhang H, et al. Evaluating a new international risk-prediction tool in IgA nephropathy[J]. JAMA Intern Med, 2019, 179(7): 942-952. [5] Vickers A J, Elkin E B. Decision curve analysis: a novel method for evaluating prediction models[J]. Med Decis Making, 2006, 26(6): 565-574. [6] Chen T Y, Li X, Li Y X, et al. Prediction and risk stratification of kidney outcomes in IgA nephropathy[J]. Am J Kidney Dis, 2019, 74(3): 300-309. [7] Miyabe Y, Karasawa K, Akiyama K, et al. Grading system utilising the total score of Oxford classification for predicting renal prognosis in IgA nephropathy[J]. Sci Rep, 2021, 11(1): 3584. [8] Coppo R, D'Arrigo G, Tripepi G, et al. Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford classification for IgA nephropathy (VALIGA) update[J]. Nephrol Dial Transplant, 2020, 35(6): 1002-1009. [9] Beck L, Bomback A S, Choi M J, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for glomerulonephritis[J]. Am J Kidney Dis, 2013, 62(3): 403-441. [10] Papasotiriou M, Stangou M, Chlorogiannis D, et al. Validation of the international IgA nephropathy prediction tool in the Greek registry of IgA nephropathy[J]. Front Med (Lausanne), 2022, 9: 778464. [11] Xie J Y, Lv J C, Wang W M, et al. Kidney failure risk prediction equations in IgA nephropathy: a multicenter risk assessment study in Chinese patients[J]. Am J Kidney Dis, 2018, 72(3): 371-380. [12] Schena F P, Anelli V W, Trotta J, et al. Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy[J]. Kidney Int, 2021, 99(5): 1179-1188. [13] Barbour S J, Espino-Hernandez G, Reich H N, et al. The MEST score provides earlier risk prediction in lgAnephropathy[J]. Kidney Int, 2016, 89(1): 167-175. [14] Zhao Y F, Zhu L, Liu L J, et al. Measures of urinary protein and albumin in the prediction of progression of IgA nephropathy[J]. Clin J Am Soc Nephrol, 2016, 11(6): 947-955. [15] Hogg R. An evaluation of the roles of hematuria and uric acid in defining the prognosis of patients with IgA nephropathy[J]. Pediatr Nephrol, 2022, 37(5): 947-958. [16] Jiang Z, Tan J X, Wang S Q, et al. Lower serum bilirubin is associated with poor renal outcome in IgA nephropathy patients[J]. Int J Med Sci, 2021, 18(13): 2964-2970. [17] Xu D M, Lv J C, Wang J W, et al. Association between plasma phosphorus and renal outcome: a prospective cohort of patients majorly with glomerulonephritis[J]. Nephrology (Carlton), 2017, 22(1): 43-48. [18] Haas M, Verhave J C, Liu Z H, et al. A multicenter study of the predictive value of crescents in IgA nephropathy[J]. J Am Soc Nephrol, 2017, 28(2): 691-701. [19] Kawasaki Y, Maeda R, Ohara S, et al. Serum IgA/C3 and glomerular C3 staining predict severity of IgA nephropathy[J]. Pediatr Int, 2018, 60(2): 162-167. [20] Heybeli C, Oktan M A, Yildiz S, et al. Clinical significance of mesangial IgM deposition in patients with IgA nephropathy[J]. Clin Exp Nephrol, 2019, 23(3): 371-379. [21] Niel O, Bastard P. Artificial intelligence in nephrology: core concepts, clinical applications, and perspectives[J]. Am J Kidney Dis, 2019, 74(6): 803-810. [22] Zhong Z X, Tang Y, Tan J X, et al. Corticosteroids could improve the renal outcome of IgA nephropathy with moderate proteinuria[J]. Int Urol Nephrol, 2021, 53(1): 121-127. |