[1] Wittenstein J, Huhle R, Leiderman M, et al. Effect of patient-ventilator asynchrony on lung and diaphragmatic injury in experimental acute respiratory distress syndrome in a porcine model[J]. Br J Anaesth,2021,S0007-0912(21)00717-0. [2] Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality[J]. Intensive Care Med, 2015, 41(4): 633-641. [3] de Araújo Sousa M L, Magrans R, Hayashi F K, et al. Predictors of asynchronies during assisted ventilation and its impact on clinical outcomes: the EPISYNC cohort study[J]. J Crit Care, 2020, 57: 30-35. [4] Beitler J R, Sands S A, Loring S H, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria[J]. Intensive Care Med, 2016, 42(9): 1427-1436. [5] Gilstrap D, MacIntyre N. Patient-ventilator interactions. Implications for clinical management[J]. Am J Respir Crit Care Med, 2013, 188(9): 1058-1068. [6] Kyo M, Shimatani T, Hosokawa K, et al. Patient-ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: a systematic review and meta-analysis[J]. J Intensive Care, 2021, 9(1): 50. [7] Muhamad Sauki N S, Damanhuri N S, Othman N A, et al. Assessing the asynchrony event based on the ventilation mode for mechanically ventilated patients in ICU[J]. Bioengineering (Basel), 2021, 8(12): 222. [8] Luo X Y, He X, Zhou Y M, et al. Patient-ventilator asynchrony in acute brain-injured patients: a prospective observational study[J]. Ann Intensive Care, 2020, 10(1): 144. [9] Pham T, Telias I, Beitler J R. Esophageal manometry[J]. Respir Care, 2020, 65(6): 772-792. [10] Dres M, Rittayamai N, Brochard L. Monitoring patient-ventilator asynchrony[J]. Curr Opin Crit Care, 2016, 22(3): 246-253. [11] Nilsestuen J O, Hargett K D. Using ventilator graphics to identify patient-ventilator asynchrony[J]. Respir Care, 2005, 50(2): 202-234. [12] Ramirez I I, Arellano D H, Adasme R S, et al. Ability of ICU health-care professionals to identify patient-ventilator asynchrony using waveform analysis[J]. Respir Care, 2017, 62(2): 144-149. [13] 刘士远, 萧毅. 基于深度学习的人工智能对医学影像学的挑战和机遇[J]. 中华放射学杂志, 2017, 51(12): 899-901. [14] 王智杰, 高杰, 孟茜茜, 等. 基于深度学习的人工智能技术在早期胃癌诊断中的应用[J]. 中华消化内镜杂志, 2018, 35(8): 551-556. [15] Bhinder B, Gilvary C, Madhukar N S, et al. Artificial intelligence in cancer research and precision medicine[J]. Cancer Discov, 2021, 11(4): 900-915. [16] Gutierrez G. Artificial intelligence in the intensive care unit[J]. Crit Care, 2020, 24(1): 101. [17] Komorowski M, Celi L A, Badawi O, et al. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care[J]. Nat Med, 2018, 24(11): 1716-1720. [18] Mulqueeny Q, Redmond S J, Tassaux D, et al. Automated detection of asynchrony in patient-ventilator interaction[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 2009: 5324-5327. [19] Piquilloud L, Jolliet P, Revelly J P. Automated detection of patient-ventilator asynchrony: new tool or new toy?[J]. Crit Care, 2013, 17(6): 1015. [20] Nguyen Q T, Pastor D, Lellouche F, et al. Mechanical ventilation system monitoring: automatic detection of dynamic hyperinflation and asynchrony[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2013, 2013: 5207-5210. [21] Gholami B, Phan T S, Haddad W M, et al. Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning[J]. Comput Biol Med, 2018, 97: 137-144. [22] Blanch L, Sales B, Montanya J, et al. Validation of the Better Care© system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study[J]. Intensive Care Med, 2012, 38(5): 772-780. [23] Zhang L W, Mao K D, Duan K L, et al. Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network[J]. Comput Biol Med, 2020, 120: 103721. [24] Pan Q, Zhang L W, Jia M Z, et al. An interpretable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation[J]. Comput Methods Programs Biomed, 2021, 204: 106057. [25] Sottile P D, Albers D, Higgins C, et al. The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm[J]. Crit Care Med, 2018, 46(2): e151-e157. [26] Rehm G B, Han J, Kuhn B T, et al. Creation of a robust and generalizable machine learning classifier for patient ventilator asynchrony[J]. Methods Inf Med, 2018, 57(4): 208-219. [27] 孙秀梅, 周建新. 食道压和跨肺压监测[J]. 中华危重病急救医学, 2018, 30(3): 280-283. [28] 李瑞瑞, 吴桐桐, 宁泽惺, 等. 基于深度学习的机械通气患者人机不同步预警方法[C]//2021中国自动化大会论文集. 北京: 中国自动化学会, 2021: 700-705. [29] Thille A W, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation[J]. Intensive Care Med, 2006, 32(10): 1515-1522. [30] MacIntyre N R, McConnell R, Cheng K C, et al. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths[J]. Crit Care Med, 1997, 25(10): 1671-1677. [31] Holanda M A, Vasconcelos R D S, Ferreira J C, et al. Patient-ventilator asynchrony[J]. J Bras Pneumol, 2018, 44(4): 321-333. |