[1]Bernert R A, Hilberg A M, Melia R, et al. Artificial intelligence and suicide prevention: a systematic review of machine learning investigations[J]. Int J Environ Res Public Health, 2020, 17(16): 5929.
[2]World Health Organization. Preventing suicide: a global imperative[EB/OL]. (2014-08-17)[2023-10-28]. https://www.who.int/publications/i/item/9789241564779.
[3]Coryell W, Fiedorowicz J, Solomon D, et al. Anxiety symptom severity and long-term risk for suicidal behavior in depressive disorders[J]. Suicide Life Threat Behav, 2019, 49(6): 1621-1629.
[4]Sokero T P, Melartin T K, Rytsälä H J, et al. Suicidal ideation and attempts among psychiatric patients with major depressive disorder[J]. J Clin Psychiatry, 2003, 64(9): 1094-1100.
[5]Dobbertin M, Blair K S, Carollo E, et al. Neuroimaging alterations of the suicidal brain and its relevance to practice: an updated review of MRI studies[J]. Front Psychiatry, 2023, 14: 1083244.
[6]Monkul E S, Hatch J P, Nicoletti M A, et al. Fronto-limbic brain structures in suicidal and non-suicidal female patients with major depressive disorder[J]. Mol Psychiatry, 2007, 12(4): 360-366.
[7]Ding Y, Lawrence N, Olié E, et al. Prefrontal cortex markers of suicidal vulnerability in mood disorders: a model-based structural neuroimaging study with a translational perspective[J]. Transl Psychiatry, 2015, 5(2): e516.
[8]Wagner G, Schultz C C, Koch K, et al. Prefrontal cortical thickness in depressed patients with high-risk for suicidal behavior[J]. J Psychiatr Res, 2012, 46(11): 1449-1455.
[9]Dixon M L, Thiruchselvam R, Todd R, et al. Emotion and the prefrontal cortex: an integrative review[J]. Psychol Bull, 2017, 143(10): 1033-1081.
[10]Mitchell D G V. The nexus between decision making and emotion regulation: a review of convergent neurocognitive substrates[J]. Behav Brain Res, 2011, 217(1): 215-231.
[11]Leyton M, Paquette V, Gravel P, et al. Alpha-[11C]Methyl-L-tryptophan trapping in the orbital and ventral medial prefrontal cortex of suicide attempters[J]. Eur Neuropsychopharmacol, 2006, 16(3): 220-223.
[12]Sullivan G M, Oquendo M A, Milak M, et al. Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder[J]. JAMA Psychiatry, 2015, 72(2): 169-178.
[13]Goodman M, Hazlett E A, Avedon J B, et al. Anterior cingulate volume reduction in adolescents with borderline personality disorder and co-morbid major depression[J]. J Psychiatr Res, 2011, 45(6): 803-807.
[14]Oquendo M A, Placidi G P A, Malone K M, et al. Positron emission tomography of regional brainmetabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression[J]. Arch Gen Psychiatry, 2003, 60(1): 14-22.
[15]Gosnell S N, Velasquez K M, Molfese D L, et al. Prefrontal cortex, temporal cortex, and hippocampus volume are affected in suicidal psychiatric patients[J]. Psychiatry Res Neuroimaging, 2016, 256: 50-56.
[16]Vang F J, Ryding E, Träskman-Bendz L, et al. Size of basal ganglia in suicide attempters, and its association with temperament and serotonin transporter density[J]. Psychiatry Res, 2010, 183(2): 177-179.
[17]Lee Y J, Kim S, Gwak A R, et al. Decreased regional gray matter volume in suicide attempters compared to suicide non-attempters with major depressive disorders[J]. Compr Psychiatry, 2016, 67: 59-65.
[18]Jia Z Y, Huang X Q, Wu Q Z, et al. High-field magnetic resonance imaging of suicidality in patients with major depressive disorder[J]. Am J Psychiatry, 2010, 167(11): 1381-1390.
[19]Jia Z Y, Wang Y Q, Huang X Q, et al. Impaired frontothalamic circuitry in suicidal patients with depression revealed by diffusion tensor imaging at 3.0 T[J]. J Psychiatry Neurosci, 2014, 39(3): 170-177.
[20]Wagner G, Koch K, Schachtzabel C, et al. Structural brain alterations in patients with major depressive disorder and high risk for suicide: evidence for a distinct neurobiological entity?[J]. Neuroimage, 2011, 54(2): 1607-1614.
[21]Wu H, Wang X, Wang D, et al. Abnormal fiber integrity in the cerebellum with recent suicide behavior in depressed patients: a diffusion tensor imaging study[J]. Asian J Psychiatr, 2023, 86: 103658.
[22]Cao J, Chen X R, Chen J M, et al. Resting-state functional MRI of abnormal baseline brain activity in young depressed patients with and without suicidal behavior[J]. J Affect Disord, 2016, 205: 252-263.
[23]Fan T T, Wu X, Yao L, et al. Abnormal baseline brain activity in suicidal and non-suicidal patients with major depressive disorder[J]. Neurosci Lett, 2013, 534: 35-40.
[24]Wagner G, Li M, Sacchet M D, et al. Functional network alterations differently associated with suicidal ideas and acts in depressed patients: an indirect support to the transition model[J]. Transl Psychiatry, 2021, 11(1): 100.
[25]Olié E, Ding Y, Le Bars E, et al. Processing of decision-making and social threat in patients with history of suicidal attempt: a neuroimaging replication study[J]. Psychiatry Res, 2015, 234(3): 369-377.
[26]Jollant F, Lawrence N S, Giampietro V, et al. Orbitofrontal cortex response to angry faces in men with histories of suicide attempts[J]. Am J Psychiatry, 2008, 165(6): 740-748.
[27]Pan L A, Hassel S, Segreti A M, et al. Differential patterns of activity and functional connectivity in emotion processing neural circuitry to angry and happy faces in adolescents with and without suicide attempt[J]. Psychol Med, 2013, 43(10): 2129-2142.
[28]Hagan C R, Joiner T E. The indirect effect of perceived criticism on suicide ideation and attempts[J]. Arch Suicide Res, 2017, 21(3): 438-454.
[29]Hames J L, Rogers M L, Silva C, et al. A social exclusion manipulation interacts with acquired capability for suicide to predict self-aggressive behaviors[J]. Arch Suicide Res, 2018, 22(1): 32-45.
[30]Gobbini M I, Haxby J V. Neural systems for recognition of familiar faces[J]. Neuropsychologia, 2007, 45(1): 32-41.
[31]Ida Gobbini M, Leibenluft E, Santiago N, et al. Social and emotional attachment in the neural representation of faces[J]. Neuroimage, 2004, 22(4): 1628-1635.
[32]Palermo R, Rhodes G. Are you always on my mind? A review of how face perception and attention interact[J]. Neuropsychologia, 2007, 45(1): 75-92.
[33]Johnson M H, Griffin R, Csibra G, et al. The emergence of the social brain network: evidence from typical and atypical development[J]. Dev Psychopathol, 2005, 17(3): 599-619.
[34]Reisch T, Seifritz E, Esposito F, et al. An fMRI study on mental pain and suicidal behavior[J]. J Affect Disord, 2010, 126(1/2): 321-325.
[35]Dombrovski A Y, Szanto K, Clark L, et al. Reward signals, attempted suicide, and impulsivity in late-life depression[J]. JAMA Psychiatry, 2013, 70(10): 1.
[36]Spreng R N, Mar R A, Kim A S N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis[J]. J Cogn Neurosci, 2009, 21(3): 489-510.
[37]Schacter D L, Addis D R, Buckner R L. Remembering the past to imagine the future: the prospective brain[J]. Nat Rev Neurosci, 2007, 8(9): 657-661.
[38]Peters J, Büchel C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions[J]. Neuron, 2010, 66(1): 138-148.
[39]Nock M K, Banaji M R. Assessment of self-injurious thoughts using a behavioral test[J]. Am J Psychiatry, 2007, 164(5): 820-823.
[40]Nock M K, Park J M, Finn C T, et al. Measuring the suicidal mind: implicit cognition predicts suicidal behavior[J]. Psychol Sci, 2010, 21(4): 511-517.
[41]Randall J R, Rowe B H, Dong K A, et al. Assessment of self-harm risk using implicit thoughts[J]. Psychol Assess, 2013, 25(3): 714-721.
[42]Barnes S M, Bahraini N H, Forster J E, et al. Moving beyond self-report: implicit associations about death/life prospectively predict suicidal behavior among veterans[J]. Suicide Life Threat Behav, 2017, 47(1): 67-77.
[43]Tello N, Harika-Germaneau G, Serra W, et al. Forecasting a fatal decision: direct replication of the predictive validity of the suicide-implicit association test[J]. Psychol Sci, 2020, 31(1): 65-74.
[44]Ballard E D, Reed J L, Szczepanik J, et al. Functional imaging of the implicit association of the self with life and death[J]. Suicide Life Threat Behav, 2019, 49(6): 1600-1608.
[45]Ballard E D, Gilbert J R, Fields J S, et al. Network changes in insula and amygdala connectivity accompany implicit suicidal associations[J]. Front Psychiatry, 2020, 11: 577628.
[46]Bryan C J, Bryan A O. Delayed reward discounting and increased risk for suicide attempts among U.S. adults with probable PTSD[J]. J Anxiety Disord, 2021, 81: 102414.
[47]Chu C, Hammock E A D, Joiner T E. Unextracted plasma oxytocin levels decrease following in-laboratory social exclusion in young adults with a suicide attempt history[J]. J Psychiatr Res, 2020, 121: 173-181.
[48]Gilbert J R, Gerner J L, Burton C R, et al. Magnetoencephalography biomarkers of suicide attempt history and antidepressant response to ketamine in treatment-resistant major depression[J]. J Affect Disord, 2022, 312: 188-197.
[49]Richard-Devantoy S, Ding Y, Lepage M, et al. Cognitive inhibition in depression and suicidal behavior: a neuroimaging study[J]. Psychol Med, 2016, 46(5): 933-944.
[50]Meyer I H, Dietrich J, Schwartz S. Lifetime prevalence of mental disorders and suicide attempts in diverse lesbian, gay, and bisexual populations[J]. Am J Public Health, 2008, 98(6): 1004-1006.
[51]Interian A, Myers C E, Chesin M S, et al. Towards the objective assessment of suicidal states: some neurocognitive deficits may be temporally related to suicide attempt[J]. Psychiatry Res, 2020, 287: 112624.
[52]Mccoy K, Fremouw W, Mcneil D W. Thresholds and tolerance of physical pain among young adults who self-injure[J]. Pain Res Manag, 2010, 15(6): 371-377.
[53]Rabasco A, Andover M S. The interaction of dissociation,pain tolerance,and suicidal ideation in predicting suicide attempts[J]. Psychiatry Res, 2020, 284: 112661.
[54]Orbach I, Stein D, Palgi Y, et al. Perception of physical pain in accident and suicide attempt patients: self-preservation vs self-destruction[J]. J Psychiatr Res, 1996, 30(4): 307-320.
[55]Hazlett E A, Blair N J, Fernandez N, et al. Startle amplitude during unpleasant pictures is greater in veterans with a history of multiple-suicide attempts and predicts a future suicide attempt[J]. Psychophysiology, 2016, 53(10): 1524-1534.
[56]Ballard E D, Ionescu D F, Vande Voort J L, et al. Increased fear-potentiated startle in major depressive disorder patients with lifetime history of suicide attempt[J]. J Affect Disord, 2014, 162: 34-38.
[57]Alacreu-Crespo A, Guillaume S, Sénèque M, et al. Cognitive modelling to assess decision-making impairments in patients with current depression and with/without suicide history[J]. Eur Neuropsychopharmacol, 2020, 36: 50-59.
[58]Richard-Devantoy S, Ding Y, Turecki G, et al. Attentional bias toward suicide-relevant information in suicide attempters: a cross-sectional study and a meta-analysis[J]. J Affect Disord, 2016, 196: 101-108.
[59]Franklin J C, Ribeiro J D, Fox K R, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research[J]. Psychol Bull, 2017, 143(2): 187-232.
[60]况利, 徐小明, 曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报: 医学版, 2022, 60(4): 10-16.
[61]Carson N J, Mullin B, Sanchez M J, et al. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records[J]. PLoS One, 2019, 14(2): e0211116.
[62]Walsh C G, Ribeiro J D, Franklin J C. Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning[J]. J Child Psychol Psychiatry, 2018, 59(12): 1261-1270.
[63]Miché M, Studerus E, Meyer A H, et al. Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning[J]. J Affect Disord, 2020, 265: 570-578.
[64]Jung J S, Park S J, Kim E Y, et al. Prediction models for high risk of suicide in Korean adolescents using machine learning techniques[J]. PLoS One, 2019, 14(6): e0217639.
[65]Bae S M, Lee S A, Lee S H. Prediction by data mining, of suicide attempts in Korean adolescents: a national study[J]. Neuropsychiatr Dis Treat, 2015, 11: 2367-2375.
[66]Kessler R C, Stein M B, Petukhova M V, et al. Predicting suicides after outpatient mental health visits in the army study to assess risk and resilience in servicemembers (Army STARRS)[J]. Mol Psychiatry, 2017, 22(4): 544-551.
[67]Parsaei M, Taghavizanjani F, Cattarinussi G, et al. Classification of suicidality by training supervised machine learning models with brain MRI findings: a systematic review[J]. J Affect Disord, 2023, 340: 766-791.
[68]Burke T A, Jacobucci R, Ammerman B A, et al. Using machine learning to classify suicide attempthistory among youth in medical care settings[J]. J Affect Disord, 2020, 268: 206-214.
[69]Ballard E D, Gilbert J R, Wusinich C, et al. New methods for assessing rapid changes in suicide risk[J]. Front Psychiatry, 2021, 12: 598434.
[70]Husky M, Swendsen J, Ionita A, et al. Predictors of daily life suicidal ideation in adults recently discharged after a serious suicide attempt: a pilot study[J]. Psychiatry Res, 2017, 256: 79-84.
[71]Gratch I, Choo T H, Galfalvy H, et al. Detecting suicidal thoughts: the power of ecological momentary assessment[J]. Depress Anxiety, 2021, 38(1): 8-16.
[72]KleimanE M, Turner B J, Fedor S, et al. Examination of real-time fluctuations in suicidal ideation and its risk factors: results from two ecological momentary assessment studies[J]. J Abnorm Psychol, 2017, 126(6): 726-738.
[73]Littlewood D L, Kyle S D, Carter L A, et al. Short sleep duration and poor sleep quality predict next-day suicidal ideation: an ecological momentary assessment study[J]. Psychol Med, 2019, 49(3): 403-411.
[74]Rath D, de Beurs D, Hallensleben N, et al. Modelling suicide ideation from beep to beep: application of network analysis to ecological momentary assessment data[J]. Internet Interv, 2019, 18: 100292.
[75]Peis I, Olmos P M, Vera-Varela C, et al. Deep sequential models for suicidal ideation from multiple source data[J]. IEEE J Biomed Health Inform, 2019, 23(6): 2286-2293.
[76]Jacobson N C, Feng B. Digital phenotyping of generalized anxiety disorder: using artificial intelligence to accurately predict symptom severity using wearable sensors in daily life[J]. Transl Psychiatry, 2022, 12(1): 336.
[77]Kleiman E M, Turner B J, Fedor S, et al. Digital phenotyping of suicidal thoughts[J]. Depress Anxiety, 2018, 35(7): 601-608.
[78]Henson P, Torous J. Feasibility and correlations of smartphone meta-data toward dynamic understanding of depression and suicide risk in schizophrenia[J]. Int J Methods Psychiatr Res, 2020, 29(2): e1825.
[79]Mikus A, Hoogendoorn M, Rocha A, et al. Predicting short term mood developments among depressed patients using adherence and ecological momentary assessment data[J]. Internet Interv, 2018, 12: 105-110.
[80]Mohr D C, Zhang M, Schueller S M. Personal sensing:understanding mental health using ubiquitous sensors and machine learning[J]. Annu Rev Clin Psychol, 2017, 13: 23-47.
[81]Low D M, Rumker L, Talkar T, et al. Natural language processing reveals vulnerable mental health support groups and heightened health anxiety on reddit during covid-19: observational study[J]. J Med Internet Res, 2020, 22(10): e22635.
[82]Berrouiguet S, Barrigón M L, Castroman J L, et al. Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol[J]. BMC Psychiatry, 2019, 19(1): 277.
[83]Kleiman E M, Glenn C R, Liu R T. Real-time monitoring of suicide risk among adolescents: potential barriers, possible solutions, and future directions[J]. J Clin Child Adolesc Psychol, 2019, 48(6): 934-946.
[84]Porras-Segovia A, Molina-Madueo R M, Berrouiguet S, et al. Smartphone-based ecological momentary assessment (EMA) in psychiatric patients and student controls: A real-world feasibility study[J]. J Affect Disord, 2020, 274: 733-741.
|