首都医科大学学报 ›› 2025, Vol. 46 ›› Issue (1): 91-98.doi: 10.3969/j.issn.1006-7795.2025.01.015

• 医学图像分析在心脑疾病诊断及预测中的应用 • 上一篇    下一篇

基于小型神经网络的癫痫发作预测研究

欧阳慧,  李宇堂,  娄晓越,  刘人硕,  孙敬孝,  李春林,  张  旭*   

  1. 首都医科大学生物医学工程学院,北京 100069
  • 收稿日期:2024-10-24 出版日期:2025-02-21 发布日期:2025-02-25
  • 通讯作者: 张 旭 E-mail:zhangxu@ccmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62171300)。

Study of epileptic seizure prediction based on a small-scale neural network

Ouyang Hui, Li Yutang, Lou Xiaoyue, Liu Renshuo, Sun Jingxiao, Li Chunlin, Zhang Xu*   

  1. School of Biomedical Engineering, Capital Medical University, Beijing  100069, China
  • Received:2024-10-24 Online:2025-02-21 Published:2025-02-25
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (62171300).

摘要: 目的  基于头皮脑电数据,提出一种针对难治性癫痫患者的癫痫发作预测方法并运用人工神经网络模型进行高效预测,以期提升癫痫脑电信号的分类预测效能。方法  采用波士顿儿童医院的难治性癫痫患者长时脑电数据库,从脑电同步性、复杂度及能量分布等多个维度提取癫痫发作间期和发作前期的脑电特征,并将这些特征输入人工神经网络模型中进行分类识别,从而实现癫痫的精准预测。通过调整模型参数以优化性能,并与现有的深度学习模型进行对比评估。结果  本研究提出的模型准确率为99.29%,精确度为91.44%,灵敏度为96.46%,特异性为99.46%。与当前基于机器学习和深度学习框架的癫痫发作预测研究相比,本研究的模型在分类预测能力上实现了提升,展现了更高的预测准确性。结论  通过手动提取癫痫脑电特征并构建人工神经网络模型,实现了对癫痫发作的有效预测。模型具有较高的准确性和稳定性,为辅助临床癫痫治疗和预防提供了可靠的技术支持。

关键词: 癫痫发作预测, 脑电, 特征提取, 机器学习

Abstract: Objective  To explore an epileptic seizure prediction method for patients with refractory epilepsy to improve the classification and prediction efficiency of epileptic electroencephalogram (EEG) signals. Methods  The study used the long-term EEG database of patients with intractable epilepsy from Children's Hospital Boston (CHB-MIT). The EEG features of epileptic seizures and preictal periods were extracted from multiple dimensions such as EEG synchronization, complexity, and energy distribution, and then these features were input into the artificial neural network model for classification and identification, thereby achieving accurate prediction of epilepsy. The performance were optimized by adjusting the model parameters, and a comparative evaluation was conducted with existing deep learning models. Results  The model proposed in this study showed an accuracy rate of 99.29%, a precision of 91.44%, a sensitivity of 96.46%, and a specificity of 99.46%. Compared with current epilepsy seizure prediction studies based on machine learning or deep learning frameworks, the model in this study improved its classification prediction capabilities and demonstrated higher prediction accuracy. Conclusion   An effective prediction of epileptic seizures was achieved by manually extracting epileptic EEG features and constructing an artificial neural network model. The model demonstrated high accuracy and stability, providing reliable technique to support clinical treatment and prevention of epilepsy.

Key words: epileptic seizure prediction, electroencephalography, feature extraction, machine learning

中图分类号: