[1]Zhao H K, Wu L, Yan G F, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263.
[2]Schaff L R, Mellinghoff I K. Glioblastoma and other primary brain malignancies in adults: a review[J]. JAMA, 2023, 329(7): 574-587.
[3]Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial[J]. JAMA, 2017, 318(23): 2306-2316.
[4]Xiao C Y, Feng X, Aini W, et al. Knowledge landscape of tumor-associated neutrophil: a bibliometric and visual analysis from 2000-2024[J]. Front Immunol, 2024, 15: 1448818.
[5]Calzetti F, Finotti G, Cassatella M A. Current knowledge on the early stages of human neutropoiesis[J]. Immunol Rev, 2023, 314(1): 111-124.
[6]SenGupta S, Hein L E, Parent C A. The recruitment of neutrophils to the tumor microenvironment is regulated by multiple mediators[J]. Front Immunol, 2021, 12: 734188.
[7]Korbecki J, Kupnicka P, Chlubek M, et al. CXCR2 receptor: regulation of expression, signal transduction, and involvement in cancer[J]. Int J Mol Sci, 2022, 23(4): 2168.
[8]Ji H Z, Liu B, Ren M, et al. The CXCLs-CXCR2 axis modulates the cross-communication between tumor-associated neutrophils and tumor cells in cervical cancer[J]. Expert Rev Clin Immunol, 2024, 20(5): 559-569.
[9]Lin Y, Cheng L, Liu Y, et al. Intestinal epithelium-derived BATF3 promotes colitis-associated colon cancer through facilitating CXCL5-mediated neutrophils recruitment[J]. Mucosal Immunol, 2021, 14(1): 187-198.
[10]Fridlender Z G, Sun J, Kim S, et al.Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN[J]. Cancer Cell, 2009, 16(3): 183-194.
[11]Andzinski L, Kasnitz N, Stahnke S, et al. Type IIFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human[J]. Int J Cancer, 2016, 138(8): 1982-1993.
[12]Jing W, Wang G, Cui Z, et al. Tumor-neutrophil cross talk orchestrates the tumor microenvironment to determine the bladder cancer progression[J]. Proc Natl Acad Sci U S A, 2024, 121(20): e2312855121.
[13]De Meo M L, Spicer J D. The role of neutrophil extracellular traps in cancer progression and metastasis[J]. Semin Immunol, 2021, 57: 101595.
[14]Xiao Y S, Cong M, Li J T, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation[J]. Cancer Cell, 2021, 39(3): 423-437.e7.
[15]Rayes R F, Mouhanna J G, Nicolau I, et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects[J]. JCI Insight, 2019, 5(16): 128008.
[16]Zhang Y, Guo L P, Dai Q C, et al. A signature for pan-cancer prognosis based on neutrophil extracellular traps[J]. J Immunother Cancer, 2022, 10(6): e004210.
[17]Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy[J]. Cancer Sci, 2008, 99(8): 1501-1506.
[18]Bordbari S, Mörchen B, Pylaeva E, et al. SIRT1-mediated deacetylation of FOXO3a transcription factor supports pro-angiogenic activity of interferon-deficient tumor-associated neutrophils[J]. Int J Cancer, 2022, 150(7): 1198-1211.
[19]Behrens L M, van Egmond M, van den Berg T K. Neutrophils as immune effector cells in antibody therapy in cancer[J]. Immunol Rev, 2023, 314(1): 280-301.
[20]Gungabeesoon J, Gort-Freitas NA, Kiss M, et al. A neutrophil response linked to tumor control in immunotherapy[J]. Cell, 2023, 186(7): 1448-1464.e20.
[21]Xu P, Zhang X, Chen K, et al. Tumor cell-derived microparticles induced by methotrexate augment T-cell antitumor responses by downregulating expression of PD-1 in neutrophils[J]. Cancer Immunol Res, 2023, 11(4): 501-514.
[22]Quaas A, Pamuk A, Klein S, et al. Sex-specific prognostic effect of CD66b-positive tumor-infiltrating neutrophils (TANs) in gastric and esophageal adenocarcinoma[J]. Gastric Cancer, 2021, 24(6): 1213-1226.
[23]Triner D, Devenport S N, Ramakrishnan S K, et al. Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice[J]. Gastroenterology, 2019, 156(5): 1467-1482.
[24]Chen C L, Wang Y, Huang C Y, et al. IL-17 induces antitumor immunity by promoting beneficial neutrophil recruitment and activation in esophageal squamous cell carcinoma[J]. Oncoimmunology, 2017, 7(1): e1373234.
[25]Hsu E J, Thomas J, Maher E A, et al. Neutrophilia and post-radiation thrombocytopenia predict for poor prognosis in radiation-treated glioma patients[J]. Front Oncol, 2022, 12: 1000280.
[26]Maas R R, Soukup K, Fournier N, et al. The local microenvironment drives activation of neutrophils in human brain tumors[J]. Cell, 2023, 186(21): 4546-4566.
[27]Huang N, Tang J, Yi X, et al. Glioma-derived S100A9 polarizes M2 microglia to inhibit CD8+T lymphocytes for immunosuppression viaαvβ3 integrin/AKT1/TGFβ1[J]. Biochim Biophys Acta Mol Cell Res, 2024, 1871(1): 119619.
[28]Liang J, Piao Y J, Holmes L, et al. Neutrophils promote the malignant glioma phenotype through S100A4[J]. Clin Cancer Res, 2014, 20(1): 187-198.
[29]Inukai M, Yokoi A, Ishizuka Y, et al. A functional role of S100A4/non-muscle myosin IIA axis for pro-tumorigenic vascular functions in glioblastoma[J]. Cell Commun Signal, 2022, 20(1): 46.
[30]Jiguet-Jiglaire C, Boissonneau S, Denicolai E, et al. Plasmatic MMP9 released from tumor-infiltrating neutrophils is predictive for bevacizumab efficacy in glioblastoma patients: an AVAglio ancillary study[J]. Acta Neuropathol Commun, 2022, 10(1): 1.
[31]Zha C J, Meng X Q, Li L L, et al. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis[J]. Cancer Biol Med, 2020, 17(1): 154-168.
[32]Wang X Z, Li A A, Wu Y F, et al. The prognostic significance of tumor-associated neutrophils and circulating neutrophils in glioblastoma (WHO CNS5 classification)[J]. BMC Cancer, 2023, 23(1): 20.
[33]Sun C, Wang S W, Ma Z, et al. Neutrophils in glioma microenvironment: from immune function to immunotherapy[J]. Front Immunol, 2024, 15: 1393173.
[34]Lad M, Beniwal A S, Jain S, et al. Glioblastoma induces the recruitment and differentiation of dendritic-like “hybrid” neutrophils from skull bone marrow[J]. Cancer Cell, 2024, 42(9): 1549-1569.e16.
[35]Tsai H C, Tong Z J, Hwang T L, et al. Acrolein produced by glioma cells under hypoxia inhibits neutrophil AKT activity and suppresses anti-tumoral activities[J]. Free Radic Biol Med, 2023, 207: 17-28.
[36]Lei Y Y, Li Y T, Hu Q L, et al. Prognostic impact of neutrophil-to-lymphocyte ratio in gliomas: a systematic review and meta-analysis[J]. World J Surg Oncol, 2019, 17(1): 152.
[37]Zhang M, Huang L, Ding G, et al. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer[J]. J Immunother Cancer, 2020, 8(1): e000308.
[38]Cheng Y, Mo F, Li Q F, et al. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin[J]. Mol Cancer, 2021, 20(1): 62.
[39]Flores-Toro J A, Luo D, Gopinath A, et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas[J]. Proc Natl Acad Sci U S A, 2020, 117(2): 1129-1138.
[40]Deng H, Lin C, Garcia-Gerique L, et al. A novel selective inhibitor JBI-589 targets PAD4-mediated neutrophil migration to suppress tumor progression[J]. Cancer Res, 2022, 82(19): 3561-3572.
[41]Wang Z Z, Chen C, Shi C D, et al. Cell membrane derived liposomes loaded with DNase I target neutrophil extracellular traps which inhibits colorectal cancer liver metastases[J]. J Control Release, 2023, 357: 620-629.
[42]Dai W W, Tian R T, Yu L B, et al. Overcoming therapeutic resistance in oncolytic herpes virotherapy by targeting IGF2BP3-induced NETosis in malignant glioma[J]. Nat Commun, 2024, 15(1): 131.
[43]Gilbert M R, Dignam J J, Armstrong T S, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma[J]. N Engl J Med, 2014, 370(8): 699-708.
[44]Abdelfattah N, Kumar P, Wang C, et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target[J]. Nat Commun, 2022, 13(1): 767.
[45]Han X J, Gong C N, Yang Q R, et al. Biomimetic nano-drug delivery system: an emerging platform for promoting tumor treatment[J]. Int J Nanomedicine, 2024, 19: 571-608.
[46]Su Y J, Gao J, Dong X Y, et al. Neutrophil-mediated delivery of nanocrystal drugs via photoinduced inflammation enhances cancer therapy[J]. ACS Nano, 2023, 17(16): 15542-15555.
[47]Wang J, Tang W, Yang M, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy[J]. Biomaterials, 2021, 273: 120784.
[48]Xue J, Zhao Z, Zhang L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol,2017,12(7):692-700.
[49]Li Y J, Teng X C, Wang Y J, et al. Neutrophil delivered hollow Titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy[J]. Adv Sci (Weinh), 2021, 8(17): e2004381.
[50]Piao C X, Lee J, Kim G E, et al. Targeted delivery of nanoparticle-conveyed neutrophils to the glioblastoma site for efficient therapy[J]. ACS Appl Mater Interfaces, 2024, 16(32): 41819-41827.
[51]Li C, Hendrikse N W, Mai M, et al. Microliter whole blood neutrophil assay preserving physiological lifespan and functional heterogeneity[J]. Small Methods, 2024, 8(9): e2400373.
[52]Wang X H, Zhang H, Chen X H, et al. Overcoming tumor microenvironment obstacles: current approaches for boosting nanodrug delivery[J]. Acta Biomater,2023, 166: 42-68.
[53]Lundy D J, Nguye^~n H, Hsieh P C H. Emerging nano-carrier strategies for brain tumor drug delivery and considerations for clinical translation[J]. Pharmaceutics, 2021, 13(8): 1193.
[54]Al Refaai K A, AlSawaftah N A, Abuwatfa W, et al. Drug release via ultrasound-activated nanocarriers for cancer treatment: A review[J]. Pharmaceutics, 2024, 16(11): 1383.
[55]Shang L H, Jiang X, Yang T, et al. Enhancing cancer chemo-immunotherapy by biomimetic nanogel with tumor targeting capacity and rapid drug-releasing in tumor microenvironment[J]. Acta Pharm Sin B, 2022, 12(5): 2550-2567.
|