首都医科大学学报 ›› 2026, Vol. 47 ›› Issue (1): 70-81.doi: 10.3969/j.issn.1006-7795.2026.01.009

• 脑血管病前沿进展 • 上一篇    下一篇

航天职业人群心脑血管疾病10年发病风险预测模型的构建与验证

范若英1#,郑曼琪2#,张倩1,郭婧1,王安心2,夏雪2,李静2,许佳明1*   

  1. 1.航天无锡健康管理中心,江苏无锡 214000;2.首都医科大学附属北京天坛医院 北京市神经外科研究所流行病学研究室,北京 100070
  • 收稿日期:2025-10-24 修回日期:2025-11-28 出版日期:2026-02-21 发布日期:2026-02-02
  • 通讯作者: 许佳明 E-mail:99202103@qq.com
  • 基金资助:
    上海航天技术研究院自主研发项目。

Development and validation of a 10-year risk prediction model for cardiovascular diseases for the aerospace occupational population

Fan Ruoying1#, Zheng Manqi2#, Zhang Qian1, Guo Jing1, Wang Anxin2, Xia Xue2, Li Jing2, Xu Jiaming1*   

  1. 1.Aerospace Wuxi Health Management Center, Wuxi 214000, Jiangsu Province,China; 2.Department of Epidemiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
  • Received:2025-10-24 Revised:2025-11-28 Online:2026-02-21 Published:2026-02-02
  • Supported by:
    This study was supported by  Independent Research and Development Project of the Shanghai Academy of Spaceflight Technology.

摘要: 目的  构建并验证航天职业人群心脑血管疾病(cardiovascular diseases,CVD)10年发病风险预测模型,为该职业人群的CVD早期防控提供量化工具。方法  纳入2014年航天无锡健康管理中心无CVD史的航天八院职工体检数据,年度体检随访至2025年4月5日,按7∶3随机分为训练集与验证集。通过LASSO-penalized Cox算法筛选236项体检指标,Cox回归构建模型并绘制列线图,Harrell C统计量与受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估区分度,校准曲线评估校准度,Delong检验比较与国内外经典模型的性能差异。结果  共纳入13 303例患者,基线中位年龄32(28,43)岁。模型纳入8个危险因素:糖尿病病史、高血压病史、高血压家族史、总胆固醇(total cholesterol,TC)/高密度脂蛋白胆固醇(high density lipoprotein-cholesterol,HDL-C)、年龄、收缩压、腰围及γ-谷氨酰转移酶。模型在训练集与验证集区分度[Harrell C: 0.898 vs 0.874;AUC (95% CI): 0.911 (0.889~0.931) vs 0.890 (0.854~0.923)]和校准度均良好,优于经典模型(P<0.05)。结论  基于易获取体检指标构建的模型可精准预测航天职业人群10年CVD发病风险,为该人群早期识别高危个体、制定职业特色以及预防策略提供科学依据,填补了航天职业特异性CVD风险评估工具的空白。

关键词: 心脑血管疾病, 队列研究, 危险因素, 预测模型, 航天, 职业人群

Abstract: Objective  To develop and validate a 10-year prediction model for the incidence risk of cardiovascular diseases (CVD) among the aerospace occupational population, providing a quantitative tool for early CVD prevention and control in this occupational group. Methods  We included CVD-free employees from Shanghai Academy of Spaceflight Technology who underwent physical examinations at Aerospace Wuxi Health Management Center in 2014. Annual physical examination was conducted, with follow up through April 5, 2025. The data were randomly divided into a training set and a validation set at a ratio of 7∶3. A total of 236 physical examination indicators were screened using the LASSO-penalized Cox algorithm. The model was constructed using Cox regression, and a nomogram was drawn. The discrimination was evaluated using the Harrell C statistic and the area under the receiver operating characteristic(ROC) curve (AUC), the calibration was evaluated using the calibration curve, and the DeLong's test was used to compare the performance differences with classic domestic and international models. Results  A total of 13 303 participants was included, with a median baseline age of 32 (28,43) years. The model incorporated 8 risk factors: a history of diabetes, a history of hypertension, a family history of hypertension,total cholesterol (TC)/high density lipoprotein -cholesterol(HDL-C), age, systolic blood pressure, waist circumference, and γ-glutamyltransferase. The model demonstrated adequate discrimination [Harrell C: 0.898 vs 0.874; AUC (95% CI): 0.911 (0.889-0.931) vs 0.890 (0.854-0.923)] and calibration in both the training set and the validation set, outperforming the classic models (P<0.05). Conclusion  A model constructed using readily accessible physical examination indicators can accurately predict the 10-year CVD incidence risk among the aerospace occupational population. This provides a scientific basis for early identification of high-risk individuals within this population, development of occupation-specific strategies, and implementation of preventive measures, thereby filling the gap in CVD risk assessment tools tailored to aerospace occupations. 

Key words: cardiovascular diseases, cohort study, risk factors, prediction model, aerospace, occupational population

中图分类号: