[1]Saeedi P Y, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
[2]Rayego-Mateos S, Rodrigues-Diez R R, Fernandez-Fernandez B, et al. Targeting inflammation to treat diabetic kidney disease: the road to 2030[J]. Kidney Int, 2023, 103(2): 282-296.
[3]Młynarska E, Buławska D, Czarnik W, et al. Novel insights into diabetic kidney disease[J]. Int J Mol Sci, 2024, 25(18): 10222.
[4]岑筠, 王英, 黄利华. 糖尿病肾病发病机制及临床治疗的应用研究进展[J]. 广州城市职业学院学报, 2025, 19(1): 90-95.
[5]Bai Y, Tian M, He P, et al. LMCD1 is involved in tubulointerstitial inflammation in the early phase of renal fibrosis by promoting NFATc1-mediated NLRP3 activation[J]. Int Immunopharmacol, 2023, 121: 110362.
[6]Verzola D, Milanesi S, Viazzi F, et al. Enhanced myostatin expression and signalling promote tubulointerstitial inflammation in diabetic nephropathy[J]. Sci Rep, 2020, 10(1): 6343.
[7]Li W, Sun J, Zhou X X, et al. Mini-review: GSDME-mediated pyroptosis in diabetic nephropathy[J]. Front Pharmacol, 2021, 12: 780790.
[8]Lan J Z, Xu B W, Shi X, et al. WTAP-mediated N6-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy[J]. Cell Mol Biol Lett, 2022, 27(1): 51.
[9]Zheng F F, Ma L Q, Li X, et al. Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease[J]. Diabetes, 2022, 71(12): 2739-2750.
[10]Fan Q Q, Li R X, Wei H T, et al. Research progress of pyroptosis in diabetic kidney disease[J]. Int J Mol Sci, 2024, 25(13): 7130.
[11]Wu Q R, Yan R Z, Yang H W, et al. Qing-Re-Xiao-Zheng-Yi-Qi formula relieves kidney damage and activates mitophagy in diabetic kidney disease[J]. Front Pharmacol, 2022, 13: 992597.
[12]Jung C Y, Yoo T H. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease[J]. Diabetes Metab J, 2022, 46(2): 181-197.
[13]田蕾, 赵文景, 刘伟敬, 等. 糖尿病肾脏疾病“肾络微型癥瘕聚散消长”理论体系的构建与应用[J]. 中华中医药杂志, 2025, 40(7): 3423-3426.
[14]Sun W W, Zhang J L, Yang H W, et al. Traditional Chinese herbal medicine qingre xiaozheng formula improves renal outcomes in patients with diabetic kidney disease: a retrospective study[J]. J Tradit Chin Med, 2025, 45(4): 873-880.
[15]Watanabe K, Sato E, Mishima E, et al. What's new in the molecular mechanisms of diabetic kidney disease: recent advances[J]. Int J Mol Sci, 2022, 24(1): 570.
[16]Wang H, Liu D W, Zheng B, et al. Emerging role of ferroptosis in diabetic kidney disease: molecular mechanisms and therapeutic opportunities[J]. Int J Biol Sci, 2023, 19(9): 2678-2694.
[17]Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822.
[18]Tuttle K R, Agarwal R, Alpers C E, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease[J]. Kidney Int, 2022, 102(2): 248-260.
[19]Lin J W, Cheng A, Cheng K, et al. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease[J]. Int J Mol Sci, 2020, 21(19): 7057.
[20]Sanz A B, Sanchez-Niño M D, Ramos A M, et al. Regulated cell death pathways in kidney disease[J]. Nat Rev Nephrol, 2023, 19(5): 281-299.
[21]Yang C, Zhang Z, Liu J T, et al. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease[J]. Mol Med, 2023, 29(1): 135.
[22]Zuo Y, Chen L. Gu H P, et al. GSDMD-mediated pyroptosis:a critical mechanism of diabetic nephropathy[J]. Expert Rev Mol Med, 2021, 23: e23.
[23]Liu P, Zhang Z D, Li Y. Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease[J]. Front Immunol, 2021, 12: 603416.
[24]Yu P, Zhang X. Liu N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128.
[25]Rao Z P, Zhu Y T, Yang P, et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics, 2022, 12(9): 4310-4329.
[26]Tong Y Q, Wang Z H, Cai L, et al. NLRP3 inflammasome and its central role in the cardiovascular diseases[J]. Oxid Med Cell Longev, 2020, 2020: 4293206.
[27]Settembre C, Fraldi A, Medina D L, et al. Signals from the lysosome: a control centre for cellular clearance and energy metabolism[J]. Nat Rev Mol Cell Biol, 2013, 14(5): 283-296.
[28]Ebner M, Puchkov D, López-Ortega O, et al. Nutrient-regulated control of lysosome function by signaling lipid conversion[J]. Cell, 2023, 186(24): 5328-5346, e26.
[29]Zhu S Y, Yao R Q, Li Y X, et al. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases[J]. Cell Death Dis, 2020, 11(9): 817.
[30]Roney J C, Li S N, Farfel-Becker T, et al. Lipid-mediated impairment of axonal lysosome transport contributing to autophagic stress[J]. Autophagy, 2021, 17(7): 1796-1798.
[31]Roney J C, Li S N, Farfel-Becker T, et al. Lipid-mediated motor-adaptor sequestration impairs axonal lysosome delivery leading to autophagic stress and dystrophy in Niemann-Pick type C[J]. Dev Cell, 2021, 56(10): 1452-1468, e8.
[32]Lamming D W, Bar-Peled L. Lysosome: the metabolic signaling hub[J]. Traffic, 2019, 20(1): 27-38.
[33]Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function[J]. Nat Rev Mol Cell Biol, 2009, 10(9): 623-635.
[34]Meyer-Schwesinger C. Lysosome function in glomerular health and disease[J]. Cell Tissue Res, 2021, 385(2): 371-392.
[35]Liu W J, Shen T T, Chen R H, et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy[J]. J Biol Chem, 2015, 290(33): 20499-20510.
[36]Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: pathophysiology and pharmacologic interventions[J]. Free Radic Biol Med, 2020, 157: 94-127.
[37]Tang T T, Lyu L L, Pan M M, et al. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation[J]. Cell Death Dis, 2018, 9(3): 351.
[38]Hu Y, Shi Y F, Chen H, et al. Blockade of autophagy prevents the progression of hyperuricemic nephropathy through inhibiting NLRP3 inflammasome-mediated pyroptosis[J]. Front Immunol, 2022, 13: 858494.
[39]Zhou X H, Ji S, Chen L Q, et al. Gut microbiota dysbiosis in hyperuricaemia promotes renal injury through the activation of NLRP3 inflammasome[J]. Microbiome, 2024, 12(1): 109.
[40]Li Y Y, Wang J D, Huang D, et al. Baicalin alleviates contrast-induced acute kidney injury through ROS/NLRP3/caspase-1/GSDMD pathway-mediated proptosis in vitro[J]. Drug Des Devel Ther, 2022, 16: 3353-3364.
|