[1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1):11-30.[2] Vaupel P, Kelleher D K, Hockel M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy[J]. Semin Oncol, 2001, 28(2 Suppl 8):29-35.[3] Evans S M, Koch C J. Prognostic significance of tumor oxygenation in humans[J]. Cancer Lett, 2003, 195(1):1-16.[4] Parker C, Milosevic M, Toi A, et al. Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer[J]. Int J Radiat Oncol Biol Phys, 2004, 58(3):750-757.[5] Cvetkovic D, Movsas B, Dicker A P, et al. Increased hypoxia correlates with increased expression of the angiogenesis marker vascular endothelial growth factor in human prostate cancer[J]. Urology, 2001, 57(4):821-825.[6] Movsas B, Chapman J D, Greenberg R E, et al. Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age: An Eppendorf po(2) study[J]. Cancer, 2000, 89(9):2018-2024.[7] Carnell D M, Smith R E, Daley F M, et al. An immunohistochemical assessment of hypoxia in prostate carcinoma using pimonidazole: implications for radioresistance[J]. Int J Radiat Oncol Biol Phys, 2006, 65(1):91-99.[8] Vergis R, Corbishley C M, Norman A R, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: A retrospective analysis of two randomised radiotherapy trials and one surgical cohort study[J]. Lancet Oncol, 2008, 9(4):342-351.[9] Berx G, Raspe E, Christofori G, et al. Pre-EMTting metastasis? Recapitulation of morphogenetic processes in cancer[J]. Clin Exp Metastasis, 2007, 24(8):587-597.[10] Morel A P, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition[J]. PLoS One, 2008, 3(8):e2888.[11] Hollier B G, Evans K, Mani S A. The epithelial-to-mesenchymal transition and cancer stem cells: A coalition against cancer therapies[J]. J Mammary Gland Biol Neoplasia, 2009, 14(1):29-43.[12] Derksen P W, Liu X, Saridin F, et al. Somatic inactivation of e-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis[J]. Cancer Cell, 2006, 10(5):437-449.[13] Cano A, Perez-Moreno M A, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing e-cadherin expression[J]. Nat Cell Biol, 2000, 2(2):76-83.[14] Bolos V, Peinado H, Perez-Moreno M A, et al. The transcription factor slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors[J]. J Cell Sci, 2003, 116(Pt 3):499-511.[15] Yang J, Mani S A, Donaher J L, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell, 2004, 117(7):927-939.[16] Nieto M A. The snail superfamily of zinc-finger transcription factors[J]. Nat Rev Mol Cell Biol, 2002, 3(3):155-166.[17] Savagner P, Yamada K M, Thiery J P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition[J]. J Cell Biol, 1997, 137(6):1403-1419.[18] Cannito S, Novo E, Compagnone A, et al. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells[J]. Carcinogenesis, 2008, 29(12):2267-2278.[19] Vaupel P, Mayer A. Hypoxia in cancer: Significance and impact on clinical outcome[J]. Cancer Metastasis Rev, 2007, 26(2):225-239.[20] Brown J M. The hypoxic cell: A target for selective cancer therapy eighteenth Bruce F. Cain memorial Award lecture[J]. Cancer Res, 1999, 59(23):5863-5870.[21] Tatum J L, Kelloff G J, Gillies R J, et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy[J]. Int J Radiat Biol, 2006, 82(10):699-757.[22] Hockel M, Schlenger K, Hockel S, et al. Hypoxic cervical cancers with low apoptotic index are highly aggressive[J]. Cancer Res, 1999, 59(18):4525-4528.[23] Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects[J]. J Natl Cancer Inst, 2001, 93(4):266-276.[24] Moen I, Oyan A M, Kalland K H, et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model[J]. PLoS One, 2009, 4(7):e6381.[25] 韩毅力, 程永毅, 徐永刚.低氧条件下HIF-1α对HGF表达影响的观察[J].中华肿瘤防治杂志, 2012, 18(18):1377-1379.[26] Jiang Y G, Luo Y, He D L, et al. Role of wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha[J]. Int J Urol, 2007, 14(11):1034-1039.[27] Yang M H, Wu M Z, Chiou S H, et al. Direct regulation of twist by hif-1alpha promotes metastasis[J]. Nat Cell Biol, 2008, 10(3):295-305.[28] Imai T, Horiuchi A, Wang C, et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells[J]. Am J Pathol, 2003, 163(4):1437-1447.[29] Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1[J]. Cancer Res, 2003, 63(5):1138-1143.[30] 倪嘉延, 吴裕丹, 黄康华, 等.HIF-1α基因干扰对大鼠CBRH-7919肝癌细胞HIF-1α与VEGF表达影响的研究[J].中华肿瘤防治杂志, 2012, 18(22):1704-1708.[31] Giaccia A, Siim B G, Johnson R S. HIF-1 as a target for drug development[J]. Nat Rev Drug Discov, 2003, 2(10):803-811.[32] Belozerov V E, Van Meir E G. Hypoxia inducible factor-1: a novel target for cancer therapy[J]. Anticancer Drugs, 2005, 16(9):901-909.[33] Melillo G. Inhibiting hypoxia-inducible factor 1 for cancer therapy[J]. Mol Cancer Res, 2006, 4(9):601-605.[34] Brown L M, Cowen R L, Debray C, et al. Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1[J]. Mol Pharmacol, 2006, 69(2):411-418.[35] Hofer T, Desbaillets I, Hopfl G, et al. Characterization of HIF-1 alpha overexpressing HeLa cells and implications for gene therapy[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2002, 133(4):475-481.[36] Du R, Huang C, Bi Q, et al. URG11 mediates hypoxia-induced epithelial-to-mesenchymal transition by modulation of E-cadherin and beta-catenin[J]. Biochem Biophys Res Commun, 2010, 391(1):135-141.[37] Zhou B P, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition[J]. Nat Cell Biol, 2004, 6(10):931-940.[38] Singh A, Settleman J. Emt, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer[J]. Oncogene, 2010, 29(34):4741-4751. |