[1] Orth M, Bellosta S. Cholesterol:its regulation and role in central nervous system disorders[J]. Cholesterol, 2012, 2012:292598. [2] Chu B B, Liao Y C, Qi W, et al. Cholesterol transport through lysosome-peroxisome membrane contacts[J]. Cell, 2015, 161(2):291-306. [3] Ginsberg S D, Alldred M J, Counts S E, et al. Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression[J]. Biol Psychiatry, 2010, 68(10):885-893. [4] Kwon H J, Abi-Mosleh L, Wang M L, et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol[J]. Cell, 2009, 137(7):1213-1224. [5] Malnar M, Hecimovic S, Mattsson N, et al. Bidirectional links between Alzheimer's disease and Niemann-Pick type C disease[J]. Neurobiol Dis, 2014, 72(Pt A):37-47. [6] Yanez M J, Belbin O, Estrada L D, et al. c-Abl links APP-BACE1 interaction promoting APP amyloidogenic processing in Niemann-Pick type C disease[J]. Biochim Biophys Acta, 2016, 1862(11):2158-2167. [7] Arenas F, Garcia-Ruiz C, Fernandez-Checa J C. Intracellular cholesterol trafficking and impact in neurodegeneration[J]. Front Mol Neurosci, 2017, 10:382. [8] Besga A, Cedazo-Minguez A, Kareholt I, et al. Differences in brain cholesterol metabolism and insulin in two subgroups of patients with different CSF biomarkers but similar white matter lesions suggest different pathogenic mechanisms[J]. Neurosci Lett, 2012, 510(2):121-126. [9] Popp J, Lewczuk P, Kolsch H, et al. Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer's disease[J]. J Neurochem, 2012, 123(2):310-316. [10] Leoni V, Mariotti C, Nanetti L, et al. Whole body cholesterol metabolism is impaired in Huntington's disease[J]. Neurosci Lett, 2011, 494(3):245-249. [11] Popp J, Meichsner S, Kolsch H, et al. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer's disease[J]. Biochem Pharmacol, 2013, 86(1):37-42. [12] Zhang X, Lv C, An Y, et al. Increased levels of 27-hydroxycholesterol induced by dietary cholesterol in brain contribute to learning and memory impairment in rats[J]. Mol Nutr Food Res, 2018, 62(3).doi:10.1002/mnfr.201700531. [13] Wang H, Yuan L, Ma W, et al. The cytotoxicity of 27-hydroxycholesterol in co-cultured SH-SY5Y cells and C6 cells[J]. Neurosci Lett, 2016, 632:209-217. [14] Brooks S W, Dykes A C, Schreurs B G. A High-cholesterol diet increases 27-hydroxycholesterol and modifies estrogen receptor expression and neurodegeneration in rabbit hippocampus[J]. J Alzheimers Dis, 2017, 56(1):185-196. [15] Testa G, Staurenghi E, Zerbinati C, et al. Changes in brain oxysterols at different stages of Alzheimer's disease:Their involvement in neuroinflammation[J]. Redox Biol, 2016, 10:24-33. [16] Tian L L, Zhou Z, Zhang Q, et al. Protective effect of (+/-) isoborneol against 6-OHDA-induced apoptosis in SH-SY5Y cells[J]. Cell Physiol Biochem, 2007, 20(6):1019-1032. [17] Castro L M, Gallant M, Niles L P. Novel targets for valproic acid:up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells[J]. J Neurochem, 2005, 95(5):1227-1236. [18] Zhang D D, Yu H L, Ma W W, et al. 27-Hydroxycholesterol contributes to disruptive effects on learning and memory by modulating cholesterol metabolism in the rat brain[J]. Neuroscience, 2015, 300:163-173. [19] An Y, Zhang D D, Yu H L, et al. 27-Hydroxycholesterol regulates cholesterol synthesis and transport in C6 glioma cells[J]. Neurotoxicology, 2017, 59:88-97. [20] Ali Z, Heverin M, Olin M, et al. On the regulatory role of side-chain hydroxylated oxysterols in the brain. Lessons from CYP27A1 transgenic and Cyp27a1(-/-) mice[J]. J Lipid Res, 2013, 54(4):1033-1043. [21] Vance J E, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin[J]. J Lipid Res, 2014, 55(8):1609-1621. [22] Lopez M E, Klein A D, Dimbil U J, et al. Anatomically defined neuron-based rescue of neurodegenerative Niemann-Pick type C disorder[J]. J Neurosci, 2011, 31(12):4367-4378. [23] Poirier J. Apolipoprotein E represents a potent gene-based therapeutic target for the treatment of sporadic Alzheimer's disease[J]. Alzheimers Dement, 2008, 4(1 Suppl 1):S91-S97. [24] Rebeck G W, Kindy M, LaDu M J. Apolipoprotein E and Alzheimer's disease:the protective effects of ApoE2 and E3[J]. J Alzheimers Dis, 2002, 4(3):145-154. |