首都医科大学学报 ›› 2020, Vol. 41 ›› Issue (2): 231-236.doi: 10.3969/j.issn.1006-7795.2020.02.014

• 基础研究 • 上一篇    下一篇

基于时间序列分析的单采血小板临床需求预测模型研究

彭荣荣1, 刘芸男1, 杨小丽1, 杨冬燕2   

  1. 1. 重庆医科大学公共卫生与管理学院 医学与社会发展研究中心 健康领域社会风险预测治理协同创新中心, 重庆 400016;
    2. 重庆市血液中心, 重庆 400015
  • 收稿日期:2019-06-27 出版日期:2020-04-21 发布日期:2020-04-16
  • 通讯作者: 杨小丽, 杨冬燕 E-mail:872463319@qq.com;576091430@qq.com
  • 基金资助:
    重庆市决策咨询与管理创新计划项目(cstc2016jccxBX0064)。

Study on clinical demand prediction model of apheresis platelets based on time series analysis

Peng Rongrong1, Liu Yunnan1, Yang Xiaoli1, Yang Dongyan2   

  1. 1. School of Public Health and Management, Chongqing Medical University, Research Center for Medical and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China;
    2. Chongqing Blood Center, Chongqing 400015, China
  • Received:2019-06-27 Online:2020-04-21 Published:2020-04-16
  • Supported by:
    This study was supported by Project of Decision-making Consulting and Management Innovation of Chongqing(cstc2016jccxBX0064).

摘要: 目的 探讨自回归移动平均(autoregressive integrated moving average,ARIMA)模型预测临床血小板需求量的可行性,为科学制定采血招募计划提供依据。方法 对重庆市中心血站2006年1月至2016年6月每月单采血小板临床用量建立ARIMA模型,运用最优模型预测2016年7至12月每月单采血小板临床用量,以验证预测效果。结果 单采血小板临床用量的最优模型为ARIMA(0,1,1)(1,0,1)12,模型残差序列自相关函数和偏自相关函数基本落在95%的置信区间内,并且Ljung-Box Q统计结果表明残差不存在相关关系(P>0.05),说明残差序列呈白噪声,模型通过检验。模型的实际值和预测值均在95%的置信区间内,且预测值与同期单采血小板临床用量的实际值比较,曲线变化趋势基本一致,平均相对误差为7.5%,预测精度较高。结论 最优模型ARIMA(0,1,1)(1,0,1)12能较好地拟合单采血小板临床用量在时间序列上的变化趋势。

关键词: ARIMA模型, 单采血小板, 临床需求预测, 中心血站

Abstract: Objective To explore the feasibility of autoregressive integrated moving average (ARIMA) model in predicting clinical platelet demand, and to provide basis for scientifically making the plan of blood collection and recruitment. Methods ARIMA model was established for the clinical usage of apheresis platelets monthly from January 2006 to June 2016 in Chongqing Central Blood Stations. The optimal model was used to predict the monthly clinical usage of apheresis platelets from July to December 2016. Results The optimal model for clinical usage of apheresis platelets was ARIMA(0,1,1)(1,0,1)12. The model residual sequence autocorrelation function and partial autocorrelation function were basically within 95% confidence interval, and the Ljung-Box Q statistical results showed that there was no correlation between the residual error (P>0.05), indicating that the residual error sequence was white noise and the model passed the test. The actual values and the predicted values of the model were in the 95% confidence interval. Compared with the actual values of the clinical usage of apheresis platelets during the same period, the trend of curve change was basically the same, which indicates the prediction accuracy was high with a 7.5% mean relative error. Conclusion The optimal model ARIMA(0,1,1)(1,0,1)12 can fit better the trend of clinical usage of apheresis platelets in time series.

Key words: autoregressive integrated moving average model, apheresis platelets, clinical demand prediction, Central Blood Stations

中图分类号: