[1] Litak J, Mazurek M, Kulesza B, et al. Cerebral small vessel disease[J]. Int J Mol Sci, 2020, 21(24): 9729. [2] Cannistraro R J, Badi M, Eidelman B H, et al. CNS small vessel disease: A clinical review[J]. Neurology, 2019, 92(24):1146-1156. [3] Salvadori E, Brambilla M, Cova I, et al. Cognitive evaluation in cerebral small vessel disease: towards an evidence-based identification of the reference standards. Part 1. A systematic review and qualitative data synthesis [J]. J Neurol, 2020, Online ahead of print. [4] Teng Z, Dong Y, Zhang D, et al. Cerebral small vessel disease and post-stroke cognitive impairment[J]. Int J Neurosci, 2017, 127(9): 824-830. [5] Xia Y, Shen Y, Wang Y, et al. White matter hyperintensities associated with progression of cerebral small vessel disease: a 7-year Chinese urban community study[J]. Aging (Albany NY), 2020, 12(9):8506-8522. [6] Niu H M, Wang M Y, Ma D L, et al. Epimedium flavonoids improve cognitive impairment and white matter lesions induced by chronic cerebral hypoperfusion through inhibiting the Lingo-1/Fyn/ROCK pathway and activating the BDNF/NRG1/PI3K pathway in rats[J]. Brain Res, 2020, 1743:146902. [7] 胡作为,沈自尹,黄建华.淫羊藿总黄酮保护衰老细胞端粒长度缩短的实验研究[J].中国中西医结合杂志,2004,24(12):1094-1097. [8] 刘小雨,沈自尹,黄建华,等.淫羊藿总黄酮经由核因子-κB相关信号转导途径调控免疫衰老机制[J].中国中西医结合杂志,2006,26(7):620-624. [9] 楚晋,李林,叶翠飞,等.淫羊藿黄酮对APP转基因小鼠学习记忆及-amyloid生成的影响[J].中国科技大学学报,2008,38(4):339-348. [10]Ma D, Zhu Y, Li Y, et al. Beneficial effects of cornel iridoid glycoside on behavioral impairment and senescence status in SAMP8 mice at different ages[J]. Behav Brain Res, 2016, 312: 20-29. [11]Lueptow L M. Novel object recognition test for the investigation of learning and memory in mice[J]. J Vis Exp, 2017(126): 55718. [12]Rizvi B, Lao P J, Colón J, et al. Tract-defined regional white matter hyperintensities and memory[J]. Neuroimage Clin, 2020, 25: 102143. [13]Baradaran H, Mtui E E, Richardson J E, et al. White matter diffusion abnormalities in carotid artery disease: a systematic review and Meta-analysis[J]. J Neuroimaging, 2016, 26(5):481-488. [14]Tae W S, Ham B J, Pyun S B, et al. Current clinical applications of diffusion-tensor imaging in neurological disorders[J]. J Clin Neurol, 2018, 14(2): 129-140. [15]Preziosa P, Kiljan S, Steenwijk M D, et al. Axonal degeneration as substrate of fractional anisotropy abnormalities in multiple sclerosis cortex[J]. Brain, 2019, 142(7): 1921-1937. [16]Wang S, Wu E X, Cai K, et al. Mild hypoxic-ischemic injury in the neonatal rat brain: longitudinal evaluation of white matter using diffusion tensor MR imaging[J]. AJNR Am J Neuroradiol, 2009,30(10):1907-1913. [17]Ding S, Guo Y, Chen X, et al. Demyelination and remyelination detected in an alternative cuprizone mouse model of multiple sclerosis with 7.0 T multiparameter magnetic resonance imaging[J]. Sci Res, 2021, 11(1):11060. [18]Martín Noguerol T, Barousse R, Socolovsky M, et al. Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries[J]. Quant Imaging Med Surg, 2017, 7(4):398-421. [19]Klistorner A, Wang C, Yiannikas C, et al. Diffusivity in the core of chronic multiple sclerosis lesions[J]. PLoS One, 2018, 13(4): e0194142. [20]Hatton S N, Panizzon M S, Vuoksimaa E, et al. Genetic relatedness of axial and radial diffusivity indices of cerebral white matter microstructure in late middle age[J]. Hum Brain Map, 2018, 39(5): 2235-2245. [21]Winklewski P J, Sabisz A, Naumczyk P, et al. Understanding the physiopathology behind axial and radial diffusivity changes what do we know?[J]. Front Neurol, 2018, 9:92. [22]Mahan M Y, Rafter D J, Truwit C L, et al. Evaluation of diffusion measurements reveals radial diffusivity indicative of microstructural damage following acute, mild traumatic brain injury[J]. Magn Reson Imaging, 2021, 77: 137-147. |