[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Axon A. Symptoms and diagnosis of gastric cancer at early curable stage[J]. Best Pract Res Clin Gastroenterol, 2006, 20(4): 697-708. [3] ASGE Technology Committee. High-resolution and high-magnification endoscopes[J]. Gastrointest Endosc, 2009, 69(3 Pt1): 399-407. [4] Rastogi A, Early D S, Gupta N, et al. Randomized, controlled trial of standard-definition white-light, high-definition white-light, and narrow-band imaging colonoscopy for the detection of colon polyps and prediction of polyp histology[J]. Gastrointest Endosc, 2011, 74(3): 593-602. [5] Tribonias G, Theodoropoulou A, Konstantinidis K, et al. Comparison of standard vs high-definition, wide-angle colonoscopy for polyp detection: a randomized controlled trial[J]. Colorectal Dis, 2010, 12(10 Online): e260-e266. [6] Feuerstein J D, Rakowsky S, Sattler L, et al. Meta-analysis of dye-based chromoendoscopy compared with standard- and high-definition white-light endoscopy in patients with inflammatory bowel disease at increased risk of colon cancer[J]. Gastrointest Endosc, 2019, 90(2): 186-195.e1. [7] Yoshimizu S, Yamamoto Y, Horiuchi Y, et al. Diagnostic performance of routine esophagogastroduodenoscopy using magnifying endoscope with narrow-band imaging for gastric cancer[J]. Dig Endosc, 2018, 30(1): 71-78. [8] Feuerstein J D, Rakowsky S, Sattler L, et al. Meta-analysis of dye-based chromoendoscopy compared with standard- and high-definition white-light endoscopy in patients with inflammatory bowel disease at increased risk of colon cancer[J]. Gastrointest Endosc, 2019, 90(2): 186-195.e1. [9] Coletta M, Sami S S, Nachiappan A, et al. Acetic acid chromoendoscopy for the diagnosis of early neoplasia and specialized intestinal metaplasia in Barrett's esophagus: a meta-analysis[J]. Gastrointest Endosc, 2016, 83(1): 57-67.e1. [10] Sharma P, Hawes R H, Bansal A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett's oesophagus: a prospective, international, randomised controlled trial[J]. Gut, 2013, 62(1): 15-21. [11] Singh R, Anagnostopoulos G K, Yao K, et al. Narrow-band imaging with magnification in Barrett's esophagus: validation of a simplified grading system of mucosal morphology patterns against histology[J]. Endoscopy, 2008, 40(6): 457-463. [12] Sato H, Inoue H, Ikeda H, et al. Utility of intrapapillary capillary loops seen on magnifying narrow-band imaging in estimating invasive depth of esophageal squamous cell carcinoma[J]. Endoscopy, 2015, 47(2): 122-128. [13] Muto M, Yao K S, Kaise M, et al. Magnifying endoscopy simple diagnostic algorithm for early gastric cancer (MESDA-G)[J]. Dig Endosc, 2016, 28(4): 379-393. [14] Horii Y, Dohi O, Naito Y, et al. Efficacy of magnifying narrow band imaging for delineating horizontal margins of early gastric cancer[J]. Digestion, 2019, 100(2): 93-99. [15] Le H, Wang L J, Zhang L, et al. Magnifying endoscopy in detecting early gastric cancer: a network meta-analysis of prospective studies[J]. Medicine, 2021, 100(3): e23934. [16] Bi Y L, Min M, Zhang F M, et al. The characteristics of blue laser imaging and the application in diagnosis of early digestive tract cancer[J]. Technol Cancer Res Treat, 2019, 18: 1533033819825877. [17] Neumann H, Hassan C. Diagnosis of early esophageal cancer using blue laser imaging (BLI)[J]. Dig Liver Dis, 2018, 50(10): 977-978. [18] Dohi O, Yagi N, Yoshida S, et al. Magnifying blue laser imaging versus magnifying narrow-band imaging for the diagnosis of early gastric cancer: a prospective, multicenter, comparative study[J]. Digestion, 2017, 96(3): 127-134. [19] Kimura-Tsuchiya R, Dohi O, Fujita Y, et al. Magnifying endoscopy with blue laser imaging improves the microstructure visualization in early gastric cancer: comparison of magnifying endoscopy with narrow-band imaging[J]. Gastroenterol Res Pract, 2017, 2017: 8303046. [20] Li Y, Yangjin C, Shi Y Y, et al. The significance of a pale area via flexible spectral imaging color enhancement in the diagnosis of esophageal precancerous lesions and early-stage squamous cancer[J]. J Clin Gastroenterol, 2019, 53(9): e400-e404. [21] Yokoyama T, Miyahara R, Funasaka K, et al. The utility of ultrathin endoscopy with flexible spectral imaging color enhancement for early gastric cancer[J]. Nagoya J Med Sci, 2019, 81(2): 241-248. [22] Zago R D R, Popoutchi P, Santana Nova Da Costa L, et al. Post-polypectomy surveillance interval based on flexible spectral color imaging enhancement (FICE) with magnifying zoom imaging for optical biopsy[J]. Endosc Int Open, 2018, 6(8): E1051-E1058. [23] Lipman G, Bisschops R, Sehgal V, et al. Systematic assessment with I-SCAN magnification endoscopy and acetic acid improves dysplasia detection in patients with Barrett's esophagus[J]. Endoscopy, 2017, 49(12): 1219-1228. [24] Hong S N, Choe W H, Lee J H, et al. Prospective, randomized, back-to-back trial evaluating the usefulness of i-SCAN in screening colonoscopy[J]. Gastrointest Endosc, 2012, 75(5): 1011-1021.e2. [25] Lee J S, Jeon S W, Kwon Y H. Comparative study of narrow-band imaging and i-scan for predicting the histology of Intermediate-to-Large colorectal polyps: a prospective, randomized pilot study[J]. Clin Endosc, 2021, 54(6): 881-887. [26] Borovicka J, Fischer J, Neuweiler J, et al. Autofluorescence endoscopy in surveillance of Barrett's esophagus: a multicenter randomized trial on diagnostic efficacy[J]. Endoscopy, 2006, 38(9): 867-872. [27] Curvers W L, Singh R, Song L M W K, et al. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system[J]. Gut, 2008, 57(2): 167-172. [28] Thomas T, Singh R, Ragunath K. Trimodal imaging-assisted endoscopic mucosal resection of early Barrett's neoplasia[J]. Surg Endosc, 2009, 23(7): 1609-1613. [29] Van Den Broek F J C, Fockens P, Van Eeden S, et al. Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps[J]. Clin Gastroenterol Hepatol, 2009, 7(3): 288-295. [30] Li L F, Ou Y H, Yue H, et al. Comparison of the detection of colorectal lesions in different endoscopic modalities: a network meta-analysis and systematic review[J]. Exp Ther Med, 2019, 18(1): 154-162. [31] Maeda Y, Kudo S E, Mori Y, et al. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video)[J]. Gastrointest Endosc, 2019, 89(2): 408-415. [32] Utsumi T, Sano Y, Iwatate M, et al. Prospective real-time evaluation of diagnostic performance using endocytoscopy in differentiating neoplasia from non-neoplasia for colorectal diminutive polyps (≤ 5 mm)[J]. World J Gastrointest Oncol, 2018, 10(4): 96-102. [33] Kudo T, Kudo S E, Mori Y, et al. Classification of nuclear morphology in endocytoscopy of colorectal neoplasms[J]. Gastrointest Endosc, 2017, 85(3): 628-638. [34] Mori Y, Kudo S E, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study[J]. Ann Intern Med, 2018, 169(6): 357-366. [35] Abe S, Saito Y, Oono Y, et al. Pilot study on probe-based confocal laser endomicroscopy for colorectal neoplasms: an initial experience in Japan[J]. Int J Colorectal Dis, 2018, 33(8): 1071-1078. [36] Belderbos T D G, Van Oijen M G H, Moons L M G, et al. Implementation of real-time probe-based confocal laser endomicroscopy (pCLE) for differentiation of colorectal polyps during routine colonoscopy[J]. Endosc Int Open, 2017, 5(11): E1104-E1110. [37] De Palma G D, Maione F, Esposito D, et al. In vivo assessment of tumour angiogenesis in colorectal cancer: the role of confocal laser endomicroscopy[J]. Colorectal Dis, 2016, 18(2): O66-O73. [38] Evans J A, Poneros J M, Bouma B E, et al. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett's esophagus[J]. Clin Gastroenterol Hepatol, 2006, 4(1): 38-43. [39] Evans J A, Bouma B E, Bressner J, et al. Identifying intestinal metaplasia at the squamocolumnar junction by using optical coherence tomography[J]. Gastrointest Endosc, 2007, 65(1): 50-56. [40] Bouma B E, Tearney G J, Compton C C, et al. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography[J]. Gastrointest Endosc, 2000, 51(4 Pt 1): 467-474. [41] Hatta W, Uno K, Koike T, et al. A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma[J]. Gastrointest Endosc, 2012, 76(3): 548-555. [42] Uno K, Koike T, Shimosegawa T. Recent development of optical coherence tomography for preoperative diagnosis of esophageal malignancies[J]. World J Gastrointest Endosc, 2015, 7(9): 872-880. |