[1] Wang D, Wang J Y, Zhou J L, et al. The role of adenosine receptor a2a in the regulation of macrophage exosomes and vascular endothelial cells during bone healing[J]. J Inflamm Res, 2021, 14: 4001-4017. [2] 王东, 周君琳. 免疫调控紊乱与骨不连的关系研究进展[J]. 中国医刊, 2021, 56(4): 375-378. [3] Wang D, Liu Y, Lv W R, et al. Repetitive brief ischemia accelerates tibial shaft fracture healing: a 5-years prospective preliminary clinical trial (PCT)[J]. BMC Musculoskelet Disord, 2021, 22(1): 631. [4] Barbosa J S, Mendes R F, Figueira F, et al. Bone tissue disorders: healing through coordination chemistry[J]. Chemistry, 2020, 26(67): 15416-15437. [5] Goodman S B, Maruyama M. Inflammation, bone healing and osteonecrosis: from bedside to bench[J]. J Inflamm Res, 2020, 13: 913-923. [6] ElHawary H, Baradaran A, Abi-Rafeh J, et al. Bone healing and inflammation: principles of fracture and repair[J]. Semin Plast Surg, 2021, 35(3): 198-203. [7] Dumic-Cule I, Peric M, Kucko L, et al. Bone morphogenetic proteins in fracture repair[J]. Int Orthop, 2018, 42(11): 2619-2626. [8] Lopez C D, Bekisz J M, Corciulo C, et al. Local delivery of adenosine receptor agonists to promote bone regeneration and defect healing[J]. Adv Drug Deliv Rev, 2019, 146: 240-247. [9] Mediero A, Wilder T, Shah L, et al. Adenosine A2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3a, regulators of bone homeostasis[J]. FASEB J, 2018, 32(7): 3487-3501. [10] 冯汪银, 周涛, 肖承鸿, 等. 续断的本草整理及现代研究概况[J]. 中药材, 2018, 41(9): 2236-2240. [11] 廖楚, 李恒飞, 李晓东. 基于网络药理学及分子对接探讨芍药甘草汤治疗乙型病毒性肝炎肝损伤的作用机制[J]. 药物评价研究, 2021, 44(9): 1852-1861. [12] Wang Y X, Zhang S, Li F C, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics[J]. Nucleic Acids Res, 2020, 48(D1): D1031-D1041. [13] Amberger J S, Hamosh A. Searching online mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes[J]. Curr Protoc Bioinformatics, 2017, 58: 1.2.1-1.2.12. [14] Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. [15] Wishart D S, Feunang Y D, Guo A C, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D1074-D1082. [16] Tilleman L, Weymaere J, Heindryckx B, et al. Contemporary pharmacogenetic assays in view of the PharmGKB database[J]. Pharmacogenomics, 2019, 20(4): 261-272. [17] Chen T, Zhang H Y, Liu Y, et al. EVenn: easy to create repeatable and editable Venn diagrams and Venn networks online[J]. J Genet Genomics, 2021, 48(9): 863-866. [18] Huang D W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using David bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44-57. [19] Huang D W, Sherman B T, Lempicki R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists[J].Nucleic Acids Res, 2009,37(1):1-13. [20] Szklarczyk D, Gable A L, Nastou K C, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. [21] Szklarczyk D, Morris J H, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1): D362-D368. [22] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. [23] Otasek D, Morris J H, Bouças J, et al. Cytoscape automation: empowering workflow-based network analysis[J]. Genome Biol, 2019, 20(1): 185. [24] Karuppasamy M P, Venkateswaran S, Subbiah P. PDB-2-PBv3.0: an updated protein block database[J]. J Bioinform Comput Biol, 2020, 18(2): 2050009. [25] Seeliger D, De Groot B L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina[J]. J Comput Aided Mol Des, 2010, 24(5): 417-422. [26] Kong L C, Wang Y, Wang H X, et al. Conditioned media from endothelial progenitor cells cultured in simulated microgravity promote angiogenesis and bone fracture healing[J]. Stem Cell Res Ther, 2021, 12(1): 47. [27] Camal Ruggieri I N, Cícero A M, Issa J P M, et al. Bone fracture healing: perspectives according to molecular basis[J]. J Bone Miner Metab, 2021, 39(3): 311-331. [28] Sharma R, Wu X H, Rhodes S D, et al. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice[J]. Hum Mol Genet, 2013, 22(23): 4818-4828. [29] 陈建泉, 许建文, 桂裕昌, 等. 基于网络药理学探讨女贞子治疗骨质疏松性骨折的作用机制[J]. 广西医科大学学报, 2021, 38(5): 969-974. |