[1] Thornton E W, Bradbury G E. Effort and stress influence the effect of lesion of the habenula complex in one-way active avoidance learning[J]. Physiol Behav, 1989, 45(5): 929-935. [2] Murphy C A, DiCamillo A M, Haun F, et al. Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions[J]. Behav Brain Res, 1996, 81(1/2): 43-52. [3] Kobayashi Y, Sano Y, Vannoni E, et al. Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice[J]. Front Behav Neurosci, 2013, 7: 17. [4] Paxinos G, Watson C R, Emson P C. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates[J]. J Neurosci Methods, 1980, 3(2): 129-149. [5] Sutherland R J. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex[J]. Neurosci Biobehav Rev, 1982, 6(1): 1-13. [6] Seigneur E, Polepalli J S, Südhof T C. Cbln2 and Cbln4 are expressed in distinct medial habenula-interpeduncular projections and contribute to different behavioral outputs[J]. Proc Natl Acad Sci U S A, 2018, 115(43): E10235-E10244. [7] Aizawa H, Kobayashi M, Tanaka S, et al. Molecular characterization of the subnuclei in rat habenula[J]. J Comp Neurol, 2012, 520(18): 4051-4066. [8] Viswanath H, Carter A Q, Baldwin P R, et al. The medial habenula: still neglected[J]. Front Hum Neurosci, 2013, 7: 931. [9] Han S, Yang S H, Kim J Y, et al. Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior[J]. Sci Rep, 2017, 7(1): 900. [10] Rotter A, Jacobowitz D M. Localization of substance P, acetylcholinesterase, muscarinic receptors and alpha-bungarotoxin binding sites in the rat interpeduncular nucleus[J]. Brain Res Bull, 1984, 12(1): 83-94. [11] Sastry B R. Effects of substance P, acetylcholine and stimulation of habenula on rat interpeduncular neuronal activity[J]. Brain Res, 1978, 144(2): 404-410. [12] Antolin-Fontes B, Li K, Ables J L, et al. The habenular G-protein-coupled receptor 151 regulates synaptic plasticity and nicotine intake[J]. Proc Natl Acad Sci U S A, 2020, 117(10): 5502-5509. [13] Houser C R, Crawford G D, Barber R P, et al. Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase[J]. Brain Res, 1983, 266(1): 97-119. [14] Kimura H, McGeer P L, Peng J H, et al. The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat[J]. J Comp Neurol, 1981, 200(2): 151-201. [15] Contestabile A, Villani L, Fasolo A, et al. Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach[J]. Neuroscience, 1987, 21(1): 253-270. [16] Hamill G S, Jacobowitz D M. A study of afferent projections to the rat interpeduncular nucleus[J]. Brain Res Bull, 1984, 13(4): 527-539. [17] Biegon A, Rainbow T C, McEwen B S. Quantitative autoradiography of serotonin receptors in the rat brain[J]. Brain Res, 1982, 242(2): 197-204. [18] Ribeiro-da-Silva A, Hökfelt T. Neuroanatomical localisation of Substance P in the CNS and sensory neurons[J]. Neuropeptides, 2000, 34(5): 256-271. [19] Qin C, Luo M. Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula[J]. Neuroscience, 2009, 161(3): 827-837. |