[1] Mitchell T M. Machine learning and data mining[J]. Commun ACM, 1999, 42(11):30-36. [2] Li R W, Chen Y, Ritchie M D, et al. Electronic health records and polygenic risk scores for predicting disease risk[J]. Nat Rev Genet, 2020, 21(8):493-502. [3] Leong K T G, Wong L Y, Aung K C Y, et al. Risk stratification model for 30-day heart failure readmission in a multiethnic South East Asian community[J]. Am J Cardiol, 2017, 119(9):1428-1432. [4] Heo J, Yoon J G, Park H, et al. Machine learning-based model for prediction of outcomes in acute stroke[J]. Stroke, 2019, 50(5):1263-1265. [5] 吴行伟, 刘馨宇, 龙恩武, 等. 机器学习在临床药物治疗中的研究进展[J]. 中国全科医学, 2022, 25(2):254-258. [6] 杜妍莹, 董鼎辉, 马锋, 等. 人工智能在护理领域的应用进展[J]. 解放军护理杂志, 2019, 36(4):58-61. [7] Deo R C. Machine learning in medicine[J]. Circulation, 2015, 132(20):1920-1930. [8] Molnar C, Casalicchio G, Bischl B, et al. Interpretable machine learning-a brief history, state-of-the-art and challenges[M]//Koprinska I, Kamp M, Appice A, et al. ECML PKDD 2020 workshops. Cham: Springer, 2020: 417-431. [9] Lundberg S M, Erion G, Chen H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nat Mach Intell, 2020, 2(1):56-67. [10] 纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10):2071-2096. [11] Guidotti R, Monreale A, Ruggieri S, et al. A survey of methods for explaining black box models[J]. ACM Comput Surv, 2019, 51(5):1-42. [12] Lundberg S M, Lee S I. A unified approach to interpreting model predictions[C]//von Luxburg U,Guyon I, Bengio S,et al. Proceedings of the 31st International Conference on Neural Information Processing Systems.NY USA: Curran Associates Inc, 2017: 4768-4777. [13] Baehrens D, Schroeter T, Harmeling S, et al. How to explain individual classification decisions[J]. J Mach Learn Res, 2010, 11: 1803-1831. [14] Ahmad M A, Teredesai A, Eckert C. Interpretable machine learning in healthcare[C]// Shehu A,Wu C, Boucher C,et al. BCB '18: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. NY, USA: Association for Computing Machinery, 2018: 447. [15] Ke G L, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//von Luxburg U, Guyon I, Bengio S, et al. Proceedings of the 31st International Conference on Neural Information Processing Systems. NY USA: Curran Associates Inc, 2017: 3149-3157. [16] Janitza S, Celik E, Boulesteix A L. A computationally fast variable importance test for random forests for high-dimensional data[J]. Adv Data Anal Classif, 2018, 12(4):885-915. [17] Greenwell B M. pdp: an R package for constructing partial dependence plots[J]. R J, 2017, 9(1):421-436. [18] Goldstein A, Kapelner A, Bleich J, et al. Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation[J]. J Comput Graph Stat, 2015, 24(1):44-65. [19] Sun C L, Jin Y C, Cheng R, et al. Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems[J]. IEEE Trans Evol Comput, 2017, 21(4):644-660. [20] Sprogar M, Kokol P, Zorman M, et al. Supporting medical decisions with vector decision trees[J]. Stud Health Technol Inform, 2001, 84(Pt 1):552-556. [21] Stoltzfus J C. Logistic regression: a brief primer[J]. Acad Emerg Med, 2011, 18(10):1099-1104. [22] Breiman L. Random forests[J]. Mach Learn, 2001, 45(1):5-32. [23] Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system[C]//Krishnapuram B, Shah M, Smola A J,et al. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. NY USA:Association for Computing Machinery, 2016: 785-794. [24] Fleuren L M, Klausch T L T, Zwager C L, et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy[J]. Intensive Care Med, 2020, 46(3):383-400. [25] Zhang L M, Xu F S, Han D D, et al. Influence of the trajectory of the urine output for 24 h on the occurrence of AKI in patients with sepsis in intensive care unit[J]. J Transl Med, 2021, 19(1):518. [26] 李超, 求文星. 基于机器学习的因果推断方法研究进展[J]. 统计与决策, 2021, 37(11):10-15. |