[1]Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
[2]Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[3]Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021,18(5):280-296.
[4]Shi L, Liu Y, Li M, et al. Emerging roles of ferroptosis in the tumor immune landscape: from danger signals to anti-tumor immunity[J]. FEBS J, 2022, 289(13):3655-3665.
[5]Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22(7):381-396.
[6]Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer[J]. J Hematol Oncol, 2019, 12(1):34.
[7]Fujihara K M, Zhang B Z, Clemons N J. Opportunities for ferroptosis in cancer therapy[J]. Antioxidants (Basel), 2021, 10(6):986..
[8]Lee, N, Carlisle, A E, Peppers, A, et al. xCT-driven expression of GPX4 determines sensitivity of breast cancer cells to ferroptosis inducers[J]. Antioxidants (Basel), 2021, 10(2):317.
[9]Wen Y, Chen H, Zhang L, et al. Glycyrrhetinic acid induces oxidative/nitrative stress and drives ferroptosis through activating NADPH oxidases and iNOS, and depriving glutathione in triple-negative breast cancer cells[J]. Free Radic Biol Med, 2021, 173:41-51.
[10]Sui S, Xu S, Pang D. Emerging role of ferroptosis in breast cancer: new dawn for overcoming tumor progression[J]. Pharmacol Ther, 2022, 232:107992.
[11]Bersuker K, Hendricks J M, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784):688-692.
[12]Doll S, Freitas F P, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784):693-698.
[13]Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1):W98-W102.
[14]Chandrashekar D S, Bashel B, Balasubramanya S A H, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8):649-658.
[15]Vasaikar S, Straub P, Wang J, et al. LinkedOmics: analyzing multi-omics data within and across 32 cancer types[J]. Nucleic Acids Res, 2018, 46(D1):D956-D963.
[16]Li T, Fan J, Wang B, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21):e108–e110.
[17]Wang, W, Green M, Choi J E, et al. CD8+T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755):270-274.
[18]Kim D H, Kim W D, Kim S K, et al. TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells[J]. Cell Death Dis, 2020, 11(5):406.
[19]Dai E, Han L, Liu J, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway[J]. Nat Commun, 2020, 11(1):6339.
[20]Sun L, Linghu D, Hung M. Ferroptosis:a promising target for cancer immunotherapy[J]. Am J Cancer Res,2021, 11(12):5856–5863.
[21]Lei G, Mao C, Yan Y, et al. Ferroptosis, radiotherapy, and combination therapeutic strategies[J]. Protein Cell, 2021, 12(11):836-857.
[22]Hadian K. Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q10 cooperatively suppress ferroptosis[J]. Biochemistry, 2020, 59(5):637-638.
[23]Venkatesh D, OBrien N A, Zandkarimi F, et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling[J]. Genes Dev, 2020, 34(7-8):526-543.
|