罗大力,曲显俊,江梦溪,金增亮,范征,薛明*
收稿日期:
2023-08-08
通讯作者:
薛明
E-mail:xuem@ccmu.edu.cn
Luo Dali, Qu Xianjun, Jiang Mengxi, Jin Zengliang, Fan Zheng, Xue Ming*
Received:
2023-08-08
摘要: 近年来,基础药理研究正由新药研发和合理用药研究导向为主转为以创新驱动和基于分子网络多靶点协同机制导向的深度系统研究。本文简要介绍并评述了近年来国内基础药理一些研究领域的发展动态,并对未来基础药理研究进行了初步规划与展望。
中图分类号:
罗大力, 曲显俊, 江梦溪, 金增亮, 范征, 薛明. 近年来我国基础药理一些研究领域的发展动态与述评[J]. 首都医科大学学报, doi: 10.3969/j.issn.1006-7795.2023.05.003.
Luo Dali, Qu Xianjun, Jiang Mengxi, Jin Zengliang, Fan Zheng, Xue Ming. Recent study advances and reviews in basic pharmacology and related fields[J]. Journal of Capital Medical University, doi: 10.3969/j.issn.1006-7795.2023.05.003.
[1]桑国卫. 2018年国家重大新药创制专项进展及十三五展望[J]. 中国生物工程杂志, 2019, 39(2): 3-12. [2] 陈玲, 刘艳红, 邹栩, 等. 2015年全球重要治疗领域新药研究的最新进展[J]. 中国新药杂志, 2016, 25(6): 601-621. [3] 国家自然科学基金委员会. 2023年度国家自然科学基金项目指南[M]. 北京: 科学出版社, 2023. [4] Frangogiannis N G. Cardiac fibrosis[J]. Cardiovasc Res, 2021, 117(6): 1450-1488. [5] Buffolo F, Tetti M, Mulatero P, et al. Aldosterone as a mediator of cardiovascular damage[J]. Hypertension, 2022, 79(9): 1899-1911. [6] Yang Y T, Yan X X, Xue J Y, et al. Connexin43 dephosphorylation at serine 282 is associated with connexin43-mediated cardiomyocyte apoptosis[J]. Cell Death Differ, 2019, 26(7): 1332-1345. [7] Xue J, Yan X, Yang Y, et al. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts[J]. Basic Res Cardiol, 2019, 114(5): 40. [8] Fu Z P, Wu L L, Xue J Y, et al. Connexin 43 hyper-phosphorylation at serine 282 triggers apoptosis in rat cardiomyocytes via activation of mitochondrial apoptotic pathway[J]. Acta Pharmacol Sin, 2022, 43(8): 1970-1978. [9] Sun Z P, Wang L Q, Han L, et al. Functional calsequestrin-1 is expressed in the heart and its deficiency is causally related to malignant hyperthermia-like arrhythmia[J]. Circulation, 2021, 144(10): 788-804. [10] Zheng Y Y, Liu T T, Wang Z Q, et al. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice[J]. Int J Biol Macromol, 2018, 112: 929-936. [11] Girardeau G, Lopes-Dos-Santos V. Brain neural patterns and the memory function of sleep[J]. Science, 2021, 374(6567): 560-564. [12] Ciric J, Kapor S, Perovic M, et al. Alterations of sleep and sleep oscillations in the hemiparkinsonian rat[J]. Front Neurosci, 2019, 13: 148. [13] Yi P L, Tsai C H, Lu M K, et al. Interleukin-1β mediates sleep alteration in rats with rotenone-induced parkinsonism[J]. Sleep, 2007, 30(4): 413-425. [14] Mizrahi-Kliger A D, Feldmann L K, Kühn A A, et al. Etiologies of insomnia in Parkinson's disease-lessons from human studies and animal models[J]. Exp Neurol, 2022, 350: 113976. [15] Scammell T E, Arrigoni E, Lipton J O. Neural circuitry of wakefulness and sleep[J]. Neuron, 2017, 93(4): 747-765. [16] Shen Y, Yu W B, Shen B, et al. Propagated α-synucleinopathy recapitulates REM sleep behaviour disorder followed by parkinsonian phenotypes in mice[J]. Brain, 2020, 143(11): 3374-3392. [17] Wong Y C, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies[J]. Nat Med, 2017, 23(2): 1-13. [18] Iliff J J, Wang M H, Liao Y H, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med, 2012, 4(147): 147ra111. [19] Ringstad G, Vatnehol S A S, Eide P K. Glymphatic MRI in idiopathic normal pressure hydrocephalus[J]. Brain, 2017, 140(10): 2691-2705. [20] Holth J K, Fritschi S K, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans[J]. Science, 2019, 363(6429): 880-884. [21] Scott-Massey A, Boag M K, Magnier A, et al. Glymphatic system dysfunction and sleep disturbance may contribute to the pathogenesis and progression of Parkinsons disease[J]. Int J Mol Sci, 2022, 23(21): 12928. [22] Fan Z, Liang Z G, Yang H, et al. Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia[J]. J Neuroinflammation, 2017, 14(1): 256. [23] Zhang D, Zhang W J, Deng S M, et al. Tenuigenin promotes non-rapid eye movement sleep via the GABAA receptor and exerts somnogenic effect in a MPTP mouse model of Parkinson's disease[J]. Biomed Pharmacother, 2023, 165: 115259. [24] Fornaro M, Anastasia A, Novello S, et al. The emergence of loss of efficacy during antidepressant drug treatment for major depressive disorder: an integrative review of evidence, mechanisms, and clinical implications[J]. Pharmacol Res, 2019, 139: 494-502. [25] Gonda X, Dome P, Neill J C, et al. Novel antidepressant drugs: beyond monoamine targets[J]. CNS Spectr, 2023, 28(1): 6-15. [26] Wang Y T, Zhang N N, Liu L J, et al. Glutamatergic receptor and neuroplasticity in depression: implications for ketamine and rapastinel as the rapid-acting antidepressants[J]. Biochem Biophys Res Commun, 2022, 594: 46-56. [27] Murezati T, Gao N N, Yang Y Q, et al. A novel NMDA receptor modulator: antidepressant effect and mechanism of GW043[J]. 中国药理学与毒理学杂志, 2023, 37(7): 540. [28] Kandola A, Stubbs B. Exercise and anxiety[J]. Adv Exp Med Biol, 2020, 1228: 345-352. [29] Bandelow B. Current and novel psychopharmacological drugs for anxiety disorders[J]. Adv Exp Med Biol, 2020, 1191: 347-365. [30] Sartori S B, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders[J]. Pharmacol Ther, 2019, 204: 107402. [31] 杨雅琪, 木热扎提·提力瓦尔地, 高娜娜, 等. GW117抗抑郁和抗焦虑作用及其机制[J]. 中国药理学与毒理学杂志, 2023, 37(7): 540. [32] Obeng S, Hiranita T, León F, et al. Novel approaches, drug candidates, and targets in pain drug discovery[J]. J Med Chem, 2021, 64(10): 6523-6548. [33] McCutcheon R A, Reis Marques T, Howes O D. Schizophrenia-an overview[J]. JAMA Psychiatry, 2020, 77(2): 201-210. [34] De Palma M, Biziato D, Petrova T V. Microenvironmental regulation of tumour angiogenesis[J]. Nat Rev Cancer, 2017, 17(8): 457-474. [35] Qi S Y, Deng S L, Lian Z X, et al. Novel drugs with high efficacy against tumor angiogenesis[J]. Int J Mol Sci, 2022, 23(13): 6934. [36] Vimalraj S. A concise review of VEGF, PDGF, FGF, notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions[J]. Int J Biol Macromol, 2022, 221: 1428-1438. [37] Anderson J, Majzner R G, Sondel P M. Immunotherapy of neuroblastoma: facts and hopes[J]. Clin Cancer Res, 2022, 28(15): 3196-3206. [38] Chu J F, Gao F C, Yan M M, et al. Natural killer cells: a promising immunotherapy for cancer[J]. J Transl Med, 2022, 20(1): 240. [39] Wolf N K, Kissiov D U, Raulet D H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy[J]. Nat Rev Immunol, 2023, 23(2): 90-105. [40] Ullah R, Yin Q, Snell A H, et al. RAF-MEK-ERK pathway in cancer evolution and treatment[J]. Semin Cancer Biol, 2022, 85: 123-154. [41] Luo D D, Liu X C, Jiang L L, et al. Rational design, synthesis, and biological evaluation of novel S1PR2 antagonists for reversing 5-FU-resistance in colorectal cancer[J]. J Med Chem, 2022, 65(21): 14553-14577. [42] Kciuk M, Gielecińska A, Budzinska A, et al. Metastasis and MAPK pathways[J]. Int J Mol Sci, 2022, 23(7): 3847. [43] Emont M P, Jacobs C, Essene A L, et al. A single-cell Atlas of human and mouse white adipose tissue[J]. Nature, 2022, 603(7903): 926-933. [44] Bäckdahl J, Franzén L, Massier L, et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin[J]. Cell Metab, 2021, 33(9): 1869-1882.e6. [45] Rondini E A, Ramseyer V D, Burl R B, et al. Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development[J]. Mol Metab, 2021, 53: 101307. [46] Liu Y, Wu Y T, Jiang M X. The emerging roles of PHOSPHO1 and its regulated phospholipid homeostasis in metabolic disorders[J]. Front Physiol, 2022, 13: 935195. [47] Jiang M X, Chavarria T E, Yuan B B, et al. Phosphocholine accumulation and PHOSPHO1 depletion promote adipose tissue thermogenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(26): 15055-15065. [48] Gliniak C M, Scherer P E. PHOSPHO1 puts the breaks on thermogenesis in brown adipocytes[J]. Proc Natl Acad Sci U S A, 2020, 117(29): 16726-16728. [49] Duan Y R, Zhang S H, Li Y, et al. Potential regulatory role of miRNA and mRNA link to metabolism affected by chronic intermittent hypoxia[J]. Front Genet, 2022, 13: 963184. [50] Ma C F, Shi T T, Song L N, et al. Angiotensin (1-7) attenuates visceral adipose tissue expansion and lipogenesis by suppression of endoplasmic reticulum stress via Mas receptor[J]. Nutr Metab (Lond), 2022, 19(1): 82. [51] Li Y L, Li L, Liu Y H, et al. Identification of metabolism-related proteins as biomarkers of insulin resistance and potential mechanisms of m6A modification[J]. Nutrients, 2023, 15(8): 1839. [52] 刘瑶, 洪岚, 余露山, 等. 创新药物转化研究中ADME的评价[J]. 药学学报, 2011, 46(1): 19-29. [53] 余露山, 毕惠嫦, 郝海平, 等. 药物代谢和药物动力学国家自然科学基金项目分析及其基础研究的发展与展望[J]. 药学进展, 2016, 40(5): 358-362. [54] Xia Z C, Zhou X L, Li J Y, et al. Multiple-omics techniques reveal the role of glycerophospholipid metabolic pathway in the response of Saccharomyces cerevisiae against hypoxic stress[J]. Front Microbiol, 2019, 10: 1398. [55] Cui C, Zhou T, Li J Y, et al. Proteomic analysis of the mouse brain after repetitive exposure to hypoxia[J]. Chem Biol Interact, 2015, 236: 57-66. [56] Zhou T, Wang M M, Cheng H T, et al. UPLC-HRMS based metabolomics reveals the sphingolipids with long fatty chains and olefinic bonds up-regulated in metabolic pathway for hypoxia preconditioning[J]. Chem Biol Interact, 2015, 242: 145-152. [57] Wu Y, Ma Y, Li J, et al. The bioinformatics and metabolomics research on anti-hypoxic molecular mechanisms of Salidroside via regulating the PTEN mediated PI3K/Akt/NF-κB signaling pathway[J]. Chin J Nat Med, 2021, 19(6): 442-453. [58] Ma Y, Wu Y, Xia Z C, et al. Anti-hypoxic molecular mechanisms of Rhodiola crenulata extract in zebrafish as revealed by metabonomics[J]. Front Pharmacol, 2019, 10: 1356. [59] Gong W W, Xu P X, Guo S S, et al. Effect of hypoxia on the pharmacokinetics and metabolism of zaleplon as a probe of CYP3A1/2 activity[J]. RSC Adv, 2017, 7(41): 25414-25421. [60] Lu S S, Guo S S, Xu P X, et al. Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood-brain barrier penetration capabilities[J]. Int J Nanomedicine, 2016, 11: 6325-6336. [61] Chen Q Y, Bai L, Zhou X L, et al. Development of long-circulating lapachol nanoparticles: formation, characterization, pharmacokinetics, distribution and cytotoxicity[J]. RSC Adv, 2020, 10(50): 30025-30034. [62] Song W T, Bai L, Yang Y Y, et al. Long-circulation and brain targeted isoliquiritigenin micelle nanoparticles: formation, characterization, tissue distribution, pharmacokinetics and effects for ischemic stroke[J]. Int J Nanomedicine, 2022, 17: 3655-3670. [63] Xu H L, Chen Q Y, Wang H, et al. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase Ⅰ and topoisomerase Ⅱ[J]. J Exp Clin Cancer Res, 2016, 35(1): 178. [64] Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development[J]. Drug Discov Today, 2021, 26(1): 80-93. |
[1] | 王梦迪, 郭弋凡, 庞彦余, 刘羽飞, 赵文景. 保肾通络方含药血清调节线粒体自噬对高糖诱导下足细胞氧化损伤的影响[J]. 首都医科大学学报, 2022, 43(5): 687-693. |
[2] | 张进, 王东. 基于网络药理学和分子对接技术探讨续断促进骨折愈合的机制[J]. 首都医科大学学报, 2022, 43(2): 275-283. |
[3] | 武永乐, 尚宏伟, 孙广永, 张栋, 丁惠国. 小鼠脂肪组织中免疫细胞分离方法的优化及亚群在肥胖小鼠中的作用[J]. 首都医科大学学报, 2021, 42(4): 559-567. |
[4] | 沙勒塔娜提·塔拉别克, 孙志朋, 王璐琪, 油红捷, 罗大力. 高糖对H9C2心肌细胞系和乳大鼠心室肌细胞钙库操纵性钙内流及相关蛋白的影响[J]. 首都医科大学学报, 2020, 41(3): 411-420. |
[5] | 柳鑫, 徐有青, 崔纯莹, 赵志刚. 载脂蛋白C3转基因小鼠应用于严重高三酰甘油血症急性胰腺炎的探索[J]. 首都医科大学学报, 2020, 41(3): 421-427. |
[6] | 郝维佳, 杨秋实, 李静宜, 马毅, 陆莉, 熊杰, 李宇航, 徐平湘, 陈怡, 薛明, 李晓蓉. 高脂饲料中添加丙硫氧嘧啶对大鼠血脂、体质量及体脂的影响[J]. 首都医科大学学报, 2018, 39(3): 385-392. |
[7] | 杨一帆, 秦一, 徐唯哲, 徐平湘, 薛明. 吡硫醇在低氧与常氧环境下大鼠体内的药代动力学研究[J]. 首都医科大学学报, 2017, 38(2): 232-237. |
[8] | 赵月蓉, 侯碧玉, 柳晨歌, 王晓波, 杜冠华, 张莉, 管淑玉. 依帕司他对2型糖尿病大鼠肝损伤的作用[J]. 首都医科大学学报, 2017, 38(2): 268-276. |
[9] | 李雪莲, 杨翠翠, 张兰, 石京山. 山茱萸环烯醚萜苷对蛋白磷酸酶2A催化亚基C磷酸化的调节机制[J]. 首都医科大学学报, 2016, 37(6): 777-783. |
[10] | 宋紫辉, 张慧霞, 项宗尚, 范明源, 蔡永明, 张宗鹏. 甘精胰岛素注射液对1型糖尿病模型大鼠的降血糖作用[J]. 首都医科大学学报, 2016, 37(5): 646-650. |
[11] | 聂洋洋, 史志国, 陈玢, 闫涛, 郑晖. 托烷司琼与昂丹司琼预防全身麻醉术后恶心呕吐效果的比较:系统评价和Meta分析[J]. 首都医科大学学报, 2016, 37(3): 391-399. |
[12] | 丁宁, 何轶, 何玉梅, 王栋, 王瑞忠, 鲁静, 戴忠, 马双成. HPLC-DAD法测定冠脉宁片中葛根素和丹酚酸B的量及其指纹图谱研究[J]. 首都医科大学学报, 2015, 36(6): 958-963. |
[13] | 李飞阳, 崔纯莹, 王玉记, 吴建辉. 阿霉素脂质体的制备及抗肿瘤活性研究[J]. 首都医科大学学报, 2015, 36(2): 157-160. |
[14] | 黄萍, 崔纯莹, 王玉记, 吴建辉. 聚乙二醇包裹表阿霉素脂质体的制备及评价[J]. 首都医科大学学报, 2015, 36(2): 166-172. |
[15] | 李雪梅, 王玉记, 吴建辉, 崔纯莹. RGD脂肪醇与17-AAG脂质体的制备及抗肿瘤活性研究[J]. 首都医科大学学报, 2015, 36(2): 172-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||