[1]Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]Siegel R L, Miller K D, Wagle N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48.
[3]Yang J D, Hainaut P, Gores G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
[4]Yang C, Zhang H L, Zhang L M, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(4): 203-222.
[5]Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314.
[6]El-Khoueiry A B, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502.
[7]FINN R S, QIN S K, IKEDA M, et al. IMbrave150: updated overall survival (OS) data from a global, randomized, open-label phase Ⅲ study of atezolizumab (atezo)+ bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC)[J]. J Clin Oncol, 2021, 39(3_suppl): 267.
[8]Llovet J M, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2022, 19(3): 151-172.
[9]Sangro B, Sarobe P, Hervás-Stubbs S, et al. Advances in immunotherapy for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(8): 525-543.
[10]Zhu A X, Finn R S, Edeline J L N, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial[J]. Lancet Oncol, 2018, 19(7): 940-952.
[11]Kassabov S R, Zhang B, Persinger J, et al. SWI/SNF unwraps, slides, and rewraps the nucleosome[J]. Mol Cell, 2003, 11(2): 391-403.
[12]Mittal P, Roberts C W M. The SWI/SNF complex in cancer-biology, biomarkers and therapy[J]. Nat Rev Clin Oncol, 2020, 17(7): 435-448.
[13]Centore R C, Sandoval G J, Soares L M M, et al. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies[J]. Trends Genet, 2020, 36(12): 936-950.
[14]Helming K C, Wang X F, Roberts C W M. Vulnerabilities of mutant SWI/SNF complexes in cancer[J]. Cancer Cell, 2014, 26(3): 309-317.
[15]Kadoch C, Crabtree G R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics[J]. Sci Adv, 2015, 1(5): e1500447.
[16]Clapier C R, Iwasa J, Cairns B R, et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 407-422.
[17]Ho L, Ronan J L, Wu J, et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency[J]. Proc Natl Acad Sci U S A, 2009, 106(13): 5181-5186.
[18]Bayona-Feliu A, Barroso S, Muoz S, et al. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts[J]. Nat Genet, 2021, 53(7): 1050-1063.
[19]Mashtalir N, DAvino A R, Michel B C, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes[J]. Cell, 2018, 175(5): 1272-1288.e20.
[20]Wang X F, Wang S, Troisi E C, et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors[J]. Nat Commun, 2019, 10(1): 1881.
[21]Hu B, Lin J Z, Yang X B, et al. The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: a review[J]. Cell Prolif, 2020, 53(4): e12791.
[22]Alver B H, Kim K H, Lu P, et al. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers[J]. Nat Commun, 2017, 8: 14648.
[23]Hodges H C, Stanton B Z, Cermakova K, et al. Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers[J]. Nat Struct Mol Biol, 2018, 25(1): 61-72.
[24]Tolstorukov M Y, Sansam C G, Lu P, et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters[J]. Proc Natl Acad Sci U S A, 2013, 110(25): 10165-10170.
[25]Barisic D, Stadler M B, Iurlaro M, et al. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors[J]. Nature, 2019, 569(7754): 136-140.
[26]Battistello E, Hixon K A, Comstock D E, et al. Stepwise activities of mSWI/SNF family chromatin remodeling complexes direct T cell activation and exhaustion[J]. Mol Cell, 2023, 83(8): 1216-1236.e12.
[27]Drosos Y, Myers J A, Xu B S, et al. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition[J]. Mol Cell, 2022, 82(13): 2472-2489.e8.
[28]Xiao L B, Parolia A, Qiao Y Y, et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer[J]. Nature, 2022, 601(7893): 434-439.
[29]Yao X S, Hong J H, Nargund A M, et al. PBRM1-deficient PBAF complexes target aberrant genomic loci to activate the NF-κB pathway in clear cell renal cell carcinoma[J]. Nat Cell Biol, 2023, 25(5): 765-777.
[30]Loesch R, Chenane L D, Colnot S. ARID2 chromatin remodeler in hepatocellular carcinoma[J]. Cells, 2020, 9(10): 2152.
[31]Yim S Y, Kang S H, Shin J H, et al. Low ARID1A expression is associated with poor prognosis in hepatocellular carcinoma[J]. Cells, 2020, 9(9): 2002.
[32]Zhang F K, Ni Q Z, Wang K, et al. Targeting USP9X-AMPK axis in ARID1A-deficient hepatocellular carcinoma[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(1): 101-127.
[33]Mullen J, Kato S, Sicklick J K, et al. Targeting ARID1A mutations in cancer[J]. Cancer Treat Rev, 2021, 100: 102287.
[34]Zhang S S, Zhou Y F, Cao J, et al. mTORC1 promotes ARID1A degradation and oncogenic chromatin remodeling in hepatocellular carcinoma[J]. Cancer Res, 2021, 81(22): 5652-5665.
[35]Shen J F, Ju Z L, Zhao W, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade[J]. Nat Med, 2018, 24(5): 556-562.
[36]Wilson B G, Roberts C W M. SWI/SNF nucleosome remodellers and cancer[J]. Nat Rev Cancer, 2011, 11(7): 481-492.
[37]Wu J N, Roberts C W M. ARID1A mutations in cancer: another epigenetic tumor suppressor?[J]. Cancer Discov, 2013, 3(1): 35-43.
[38]Mandal J, Mandal P, Wang T L, et al. Treating ARID1A mutated cancers by harnessing synthetic lethality and DNA damage response[J]. J Biomed Sci, 2022, 29(1): 71.
[39]He F, Li J, Xu J F, et al. Decreased expression of ARID1A associates with poor prognosis and promotes metastases of hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2015, 34(1): 47.
[40]Hu C B, Li W P, Tian F, et al. ARID1A regulates response to anti-angiogenic therapy in advanced hepatocellular carcinoma[J]. J Hepatol, 2018, 68(3): 465-475.
[41]Cheng S, Wang L, Deng C H, et al. ARID1A represses hepatocellular carcinoma cell proliferation and migration through lncRNA MVIH[J]. Biochem Biophys Res Commun, 2017, 491(1): 178-182.
[42]Xiao Y, Liu G D, Ouyang X W, et al. Loss of ARID1A promotes hepatocellular carcinoma progression via up-regulation of MYC transcription[J]. J Clin Transl Hepatol, 2021, 9(4): 528-536.
[43]Sun X X, Wang S C, Wei Y L, et al. Arid1a has Context-dependent oncogenic and tumor suppressor functions in liver cancer[J]. Cancer Cell, 2017, 32(5): 574-589.e6.
[44]Meng G X, Yang C C, Yan L J, et al. The somatic mutational landscape and role of the ARID1A gene in hepatocellular carcinoma[J]. Heliyon, 2023, 9(3): e14307.
[45]Jiang H, Cao H J, Ma N, et al. Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-snail axis[J]. Proc Natl Acad Sci U S A, 2020, 117(9): 4770-4780.
[46]Oba A, Shimada S, Akiyama Y, et al. ARID2 modulates DNA damage response in human hepatocellular carcinoma cells[J]. J Hepatol, 2017, 66(5): 942-951.
[47]Duan Y J, Tian L, Gao Q Z, et al. Chromatin remodeling gene ARID2 targets cyclin D1 and cyclin E1 to suppress hepatoma cell progression[J]. Oncotarget, 2016, 7(29): 45863-45875.
[48]Cao H J, Jiang H, Ding K, et al. ARID2 mitigates hepatic steatosis via promoting the ubiquitination of JAK2[J]. Cell Death Differ, 2023, 30(2): 383-396.
[49]Hargreaves D C, Crabtree G R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms[J]. Cell Res, 2011, 21(3): 396-420.
[50]Concepcion C P, Ma S, Lafave L M, et al. Smarca4 inactivation promotes lineage-specific transformation and early metastatic features in the lung[J]. Cancer Discov, 2022, 12(2): 562-585.
[51]Neil A J, Zhao L, Isidro R A, et al. SMARCA4 mutations in carcinomas of the esophagus, esophagogastric junction, and stomach[J]. Mod Pathol, 2023, 36(6): 100183.
[52]Romero O A, Vilarrubi A, Alburquerque-Bejar J J, et al. SMARCA4 deficient tumours are vulnerable to KDM6A/UTX and KDM6B/JMJD3 blockade[J]. Nat Commun, 2021, 12(1): 4319.
[53]Tian Y M, Xu L, Li X, et al. SMARCA4: current status and future perspectives in non-small-cell lung cancer[J]. Cancer Lett, 2023, 554: 216022.
[54]Wang P, Song X H, Cao D, et al. Oncogene-dependent function of BRG1 in hepatocarcinogenesis[J]. Cell Death Dis, 2020, 11(2): 91.
[55]Kim S Y, Shen Q Y, Son K, et al. SMARCA4 oncogenic potential via IRAK1 enhancer to activate Gankyrin and AKR1B10 in liver cancer[J]. Oncogene, 2021, 40(28): 4652-4662.
[56]Wang D, Wang J C, Zhou D M, et al. SWI/SNF complex genomic alterations as a predictive biomarker for response to immune checkpoint inhibitors in multiple cancers[J]. Cancer Immunol Res, 2023, 11(5): 646-656.
[57]Martins F, Sofiya L, Sykiotis G P, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance[J]. Nat Rev Clin Oncol, 2019, 16(9): 563-580.
[58]Topalian S L, Hodi F S, Brahmer J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454.
[59]Goswami S, Chen Y L, Anandhan S, et al. ARID1A mutation plus CXCL13 expression act as combinatorial biomarkers to predict responses to immune checkpoint therapy in mUCC[J]. Sci Transl Med, 2020, 12(548): eabc4220.
[60]Zhou M, Yuan J L, Deng Y Q, et al. Emerging role of SWI/SNF complex deficiency as a target of immune checkpoint blockade in human cancers[J]. Oncogenesis, 2021, 10(1): 3.
[61]Abou Alaiwi S, Nassar A H, Xie W L, et al. Mammalian SWI/SNF complex genomic alterations and immune checkpoint blockade in solid tumors[J]. Cancer Immunol Res, 2020, 8(8): 1075-1084.
[62]Astori A, Tingvall-Gustafsson J, Kuruvilla J, et al. ARID1a associates with lymphoid-restricted transcription factors and has an essential role in T cell development[J]. J Immunol, 2020, 205(5): 1419-1432.
[63]Okamura R, Kato S, Lee S Z A, et al. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy[J]. J Immunother Cancer, 2020, 8(1): e000438.
[64]Fang J Z, Li C, Liu X Y, et al. Hepatocyte-Specific ARID1A deficiency initiates mouse steatohepatitis and hepatocellular carcinoma [J]. PLoS One, 2015, 10(11): e0143042.
[65]Kong M, Chen X Y, Xu H H, et al. Hepatocyte-specific deletion of Brg1 alleviates methionine-and-choline-deficient diet (MCD) induced non-alcoholic steatohepatitis in mice[J]. Biochem Biophys Res Commun, 2018, 503(1): 344-351.
[66]Pan D, Kobayashi A, Jiang P, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing[J]. Science, 2018, 359(6377): 770-775.
[67]Fan Z W, Kong M, Dong W H, et al. Trans-activation of eotaxin-1 by Brg1 contributes to liver regeneration[J]. Cell Death Dis, 2022, 13(5): 495.
[68]Miao D N, Margolis C A, Gao W H, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma[J]. Science, 2018, 359(6377): 801-806.
|