[1] Mintz Y, Brodie R. Introduction to artificial intelligence in medicine[J]. Minim Invasive Ther Allied Technol, 2019, 28(2): 73-81.
[2] de Margerie-Mellon C, Chassagnon G. Artificial intelligence: a critical review of applications for lung nodule and lung cancer[J]. Diagn Interv Imaging, 2023, 104(1): 11-17.
[3] Chen M, Copley S J, Viola P, et al. Radiomics and artificial intelligence for precision medicine in lung cancer treatment[J]. Semin Cancer Biol, 2023, 93: 97-113.
[4] Sechopoulos I, Teuwen J, Mann R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art[J]. Semin Cancer Biol, 2021, 72: 214-225.
[5] Sammut S J, Crispin-Ortuzar M, Chin S F, et al. Multi-omic machine learning predictor of breast cancer therapy response[J]. Nature, 2022, 601(7894): 623-629.
[6] Wei F F, Azuma K, Nakahara Y, et al. Machine learning for prediction of immunotherapeutic outcome in non-small-cell lung cancer based on circulating cytokine signatures[J]. J Immunother Cancer, 2023, 11(7): e006788.
[7] Zeng F G. Celebrating the one millionth cochlear implant[J]. JASA Express Lett, 2022, 2(7): 077201.
[8] World Health Organization. Deafness and hearing loss[EB/OL].[2024-10-15]. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss.
[9] Gajecki T, Nogueira W. A fused deep denoising sound coding strategy for bilateral cochlear implants[J]. IEEE Trans Biomed Eng, 2024, 71(7): 2232-2242.
[10] Goehring T, Bolner F, Monaghan J J, et al. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users[J]. Hear Res, 2017, 344: 183-194.
[11] Rapoport N, Pavelchek C, Michelson A P, et al. Artificial intelligence in otology and neurotology[J]. Otolaryngol Clin North Am, 2024, 57(5): 791-802.
[12] Lesica N A, Mehta N, Manjaly J G, et al. Harnessing the power of artificial intelligence to transform hearing healthcare and research[J]. Nat Mach Intell, 2021, 3(10): 840-849.
[13] Wang D L, Chen J T. Supervised speech separation based on deep learning: an overview[J]. IEEE/ACM Trans Audio Speech Lang Proces, 2018, 26(10): 1702-1726.
[14] Oticon. More technology Polaris for professionals (Oticon)[EB/OL].[2024-10-16]. https://www.oticon.com/professionals/brainhearing-technology/more-technology.
[15] Widex. Artificial intelligence in hearing aids[EB/OL].[2024-10-16]. https://uk.widex.pro/en-gb/evidence-technology/technological-excellence/artificial-intelligence-in-hearing-aids.
[16] Gatto A, Tofanelli M, Costariol L, et al. Otological planning software-OTOPLAN: A narrative literature review[J]. Audiol Res, 2023, 13(5): 791-801.
[17] Zwolan T A, Schvartz-Leyzac K C, Pleasant T. Development of a 60/60 guideline for referring adults for a traditional cochlear implant candidacy evaluation[J]. Otol Neurotol, 2020, 41(7): 895-900.
[18] Patro A, Perkins E L, Ortega C A, et al. Machine learning approach for screening cochlear implant candidates: comparing with the 60/60 guideline[J]. Otol Neurotol, 2023, 44(7): e486-e491.
[19] Carlson M L, Carducci V, Deep N L, et al. AI model for predicting adult cochlear implant candidacy using routine behavioral audiometry[J]. Am J Otolaryngol, 2024, 45(4): 104337.
[20] 李振华. 基于深度学习的内耳自动分割及耳蜗畸形的自动诊断研究[D]. 南宁: 广西医科大学, 2022.
[21] Li Z H, Zhou L T, Bin X, et al. Utility of deep learning for the diagnosis of cochlear malformation on temporal bone CT[J]. Jpn J Radiol, 2024, 42(3): 261-267.
[22] Zhang D Q, Liu Y, Noble J H, et al. Localizing landmark sets in head CTs using random forests and a heuristic search algorithm for registration initialization[J]. J Med Imaging, 2017,4(4): 044007.
[23] Hafeez N, Du X L, Boulgouris N, et al. Electrical impedance guides electrode array in cochlear implantation using machine learning and robotic feeder[J]. Hear Res, 2021, 412: 108371.
[24] Pile J, Wanna GB, Simaan N. Robot-assisted perception augmentation for online detection of insertion failure during cochlear implant surgery[J]. Robotica, 2017, 35(7): 1598-1615.
[25] Bell B, Williamson T, Gerber N, et al. An image-guided robot system for direct cochlear access[J]. Cochlear Implants Int, 2014, 15(S1): S11-S13.
[26] Baron S, Eilers H, Munske B, et al. Percutaneous inner-ear access via an image-guided industrial robot system[J]. Proc Inst Mech Eng H, 2010, 224(5): 633-649.
[27] Al Saadi M, Heuninck E, De Raeve L, et al. Robotic cochlear implantation in post-meningitis ossified cochlea[J]. Am J Otolaryngol, 2023, 44(1): 103668.
[28] 于杰, 赵杨, 田旭, 等. 人工耳蜗植入手术入路及机器人人工耳蜗通道钻制进展[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(11): 1363-1367.
[29] Caversaccio M, Gavaghan K, Wimmer W, et al. Robotic cochlear implantation: surgical procedure and first clinical experience[J]. Acta Otolaryngol, 2017, 137(4): 447-454.
[30] Topsakal V, Heuninck E, Matulic M, et al. First study in men evaluating a surgical robotic Tool providing autonomous inner ear access for cochlear implantation[J]. Front Neurol, 2022, 13: 804507.
[31] Claussen A D, Kocharyan A, Bennion D M, et al. Robotics-Assisted cochlear implant insertion[J]. Otol Neurotol, 2024, 45(5): e459.
[32] Chang C H, Anderson G T, Loizou P C. A neural network model for optimizing vowel recognition by cochlear implant listeners[J]. IEEE Trans Neural Syst Rehabil Eng, 2001, 9(1): 42-48.
[33] Vaerenberg B, Smits C, De Ceulaer G, et al. Cochlear implant programming: a global survey on the state of the art[J]. ScientificWorldJournal, 2014, 2014: 501738.
[34] Zadák J, Unbehauen R. An application of mapping neural networks and a digital signal processor for cochlear neuroprostheses[J]. Biol Cybern, 1993, 68(6): 545-552.
[35] Leisenberg M. Unsupervised neural networks for speech perception with cochlear implant systems for the profoundly deaf[C]//International Workshop on Artificial Neural Networks: From Natural to Artificial Neural Computation, 1995, Heidelberg: Springer, 1995: 462-470.
[36] Torresen J, Iversen A H, Greisiger R. Data from past patients used to streamline adjustment of levels for cochlear implant for new patients[C]//2016 IEEE Symposium Series on Computational Intelligence (SSCI), Greece: IEEE, 2016: 1-7.
[37] Waltzman S B, Kelsall D C. The use of artificial intelligence to program cochlear implants[J]. Otol Neurotol, 2020, 41(4): 452-457.
[38] Wathour J, Govaerts P J, Deggouj N. From manual to artificial intelligence fitting: Two cochlear implant case studies[J]. Cochlear Implants Int, 2020, 21(5): 299-305.
[39] Li H, Helpard L, Ekeroot J, et al. Three-dimensional tonotopic mapping of the human cochlea based on synchrotron radiation phase-contrast imaging[J]. Sci Rep, 2021, 11(1): 4437.
[40] Di Maro F, Carner M, Sacchetto A, et al. Frequency reallocation based on cochlear place frequencies in cochlear implants: a pilot study[J]. Eur Arch Otorhinolaryngol, 2022, 279(10): 4719-4725.
[41] Jiam N T, Gilbert M, Cooke D, et al. Association between Flat-Panel computed tomographic imaging-guided Place-Pitch mapping and speech and pitch perception in cochlear implant users[J]. JAMA Otolaryngol Head Neck Surg, 2019, 145(2): 109-116.
[42] Moberly A C, Bates C, Harris M S, et al. The enigma of poor performance by adults with cochlear implants[J]. Otol Neurotol, 2016, 37(10): 1522-1528.
[43] Shafieibavani E, Goudey B, Kiral I, et al. Predictive models for cochlear implant outcomes: Performance, generalizability, and the impact of cohort size[J]. Trends Hear, 2021, 25: 23312165211066174.
[44] Feng G Y, Ingvalson E M, Grieco-Calub T M, et al. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients[J]. Proc Natl Acad Sci U S A, 2018, 115(5): E1022-E1031.
[45] Tan L R, Holland S K, Deshpande A K, et al. A semi-supervised Support Vector Machine model for predicting the language outcomes following cochlear implantation based on pre-implant brain fMRI imaging[J]. Brain Behav, 2015, 5(12): e00391.
[46] Lu S M, Xie J, Wei X M, et al. Machine learning-based prediction of the outcomes of cochlear implantation in patients with cochlear nerve deficiency and normal cochlea: a 2-Year Follow-Up of 70 children[J]. Front Neurosci, 2022, 16: 895560.
[47] Weng J L, Xue S J, Wei X M, et al. Machine learning-based prediction of the outcomes of cochlear implantation in patients with inner ear malformation[J]. Eur Arch Otorhinolaryngol, 2024, 281(7): 3535-3545.
[48] Kim H, Kang W S, Park H J, et al. Cochlear implantation in postlingually deaf adults is time-sensitive towards positive outcome: prediction using advanced machine learning techniques[J]. Sci Rep, 2018, 8(1): 18004.
[49] Crowson M G, Lin V, Chen J M, et al. Machine learning and cochlear Implantation-A structured review of opportunities and challenges[J]. Otol Neurotol, 2020, 41(1): e36-e45.
[50] Xue S J, Wei X M, Kong Y, et al. Trends in research on cochlear implantation with inner ear malformation: a bibliometric and visualization analysis from 1986 to 2024[J]. Eur Arch Otorhinolaryngol, 2024, 281(11): 5657-5667.
|