[1]Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]Ettinger D S, Wood D E, Aisner D L, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530.
[3]中华医学会呼吸病学分会. 早期肺癌诊断中国专家共识 (2023年版)[J]. 中华结核和呼吸杂志, 2023, 46(1): 1-18.
[4]Liu S L, Wang R, Zhang Y, et al. Precise diagnosis of intraoperative frozen section is an effective method to guide resection strategy for peripheral small-sized lung adenocarcinoma[J]. J Clin Oncol, 2016, 34(4): 307-313.
[5]Konno H, Isaka M, Mizuno T, et al. Validity of surgical decision based on intraoperative frozen section diagnosis for unconfirmed pulmonary nodules with previous malignancy[J]. Gen Thorac Cardiovasc Surg, 2022, 70(5): 472-478.
[6]Li F, Yang L, Zhao Y, et al. Intraoperative frozen section for identifying the invasion status of lung adenocarcinoma: a systematic review and meta-analysis[J]. Int J Surg, 2019, 72: 175-184.
[7]Zhu J J, Li W, Zhou J H, et al. The diagnostic value of narrow-band imaging for early and invasive lung cancer: a meta-analysis[J]. Clinics (Sao Paulo), 2017, 72(7): 438-448.
[8]李晓舟, 杨天月, 丁建华. 唾液表面增强拉曼光谱用于肺癌的诊断[J]. 光谱学与光谱分析, 2012, 32(2): 391-393.
[9]Liu W W, Jin X F, Li J J, et al. Study of cervical precancerous lesions detection by spectroscopy and support vector machine[J]. Minim Invasive Ther Allied Technol, 2021, 30(4): 208-214.
[10]Loshchenov M, Levkin V, Kalyagina N, et al. Laser-induced fluorescence diagnosis of stomach tumor[J]. Lasers Med Sci, 2020, 35(8): 1721-1728.
[11]Sun L, Zhou M, Li Q L, et al. Diagnosis of cholangiocarcinoma from microscopic hyperspectral pathological dataset by deep convolution neural networks[J]. Methods, 2022, 202: 22-30.
[12]Zhu J J, Liu R, Wu X C, et al. The value of narrow-band imaging bronchoscopy in diagnosing central lung cancer[J]. Front Oncol, 2022, 12: 998770.
[13]Vincent B D, Fraig M, Silvestri G A. A pilot study of narrow-band imaging compared to white light bronchoscopy for evaluation of normal airways and premalignant and malignant airways disease[J]. Chest, 2007, 131(6): 1794-1799.
[14]Byrne M F, Chapados N, Soudan F, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model[J]. Gut, 2019, 68(1): 94-100.
[15]Zhang Q, Wang Y, Qiu S, et al. 3D-PulCNN: pulmonary cancer classification from hyperspectral images using convolution combination unit based CNN[J].J Biophotonics, 2021, 14(12): e202100142.
[16]Stelling A, Salzer R, Kirsch M, et al. Intra-operative optical diagnostics with vibrational spectroscopy[J]. Anal Bioanal Chem, 2011, 400(9): 2745-2753.
[17]Kendall C, Isabelle M, Bazant-Hegemark F, et al. Vibrational spectroscopy: a clinical tool for cancer diagnostics[J]. Analyst, 2009, 134(6): 1029-1045.
[18]Huang Z W, McWilliams A, Lui H, et al. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer[J]. Int J Cancer, 2003, 107(6): 1047-1052.
[19]Rehman I U, Khan R S, Rehman S. Role of artificial intelligence and vibrational spectroscopy in cancer diagnostics[J]. Expert Rev Mol Diagn, 2020, 20(8): 749-755.
[20]Moisoiu V, Stefancu A, Gulei D N, et al. SERS-based differential diagnosis between multiple solid malignancies: breast, colorectal, lung, ovarian and oral cancer[J]. Int J Nanomedicine, 2019, 14: 6165-6178.
[21]Auner G W, Koya S K, Huang C H, et al. Applications of Raman spectroscopy in cancer diagnosis[J]. Cancer Metastasis Rev, 2018, 37(4): 691-717.
[22]Wang H, Zhang S H, Wan L M, et al. Screening and staging for non-small cell lung cancer by serum laser Raman spectroscopy[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2018, 201: 34-38.
[23]唐伟跃, 刘婉华, 孙雷明, 等. 肺癌切片的拉曼光谱分析[J]. 激光杂志, 2007, 28(3): 91.
[24]Chen C, Hao J Q, Hao X H, et al. The accuracy of Raman spectroscopy in the diagnosis of lung cancer: a systematic review and meta-analysis[J]. TranslCancer Res, 2021, 10(8): 3680-3693.
[25]Zheng Q F, Li J Y, Yang L, et al. Raman spectroscopy as a potential diagnostic tool to analyse biochemical alterations in lung cancer[J]. Analyst, 2020, 145(2): 385-392.
[26]Kothari R, Jones V, Mena D, et al. Raman spectroscopy and artificial intelligence to predict the Bayesian probability of breast cancer[J]. Sci Rep, 2021, 11(1): 6482.
[27]Weng S, Xu X Y, Li J S, et al. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer[J]. J Biomed Opt, 2017, 22(10): 1-10.
[28]Evers D J, Nachabé R, Klomp H M, et al. Diffuse reflectance spectroscopy: a new guidance tool for improvement of biopsy procedures in lung malignancies[J]. Clin Lung Cancer, 2012, 13(6): 424-431.
[29]Evers D J, Nachabe R, Vranken Peeters M J, et al. Diffuse reflectance spectroscopy: towards clinical application in breast cancer[J]. Breast Cancer Res Treat, 2013, 137(1): 155-165.
[30]de Boer L L, Bydlon T M, van Duijnhoven F, et al. Towards the use of diffuse reflectance spectroscopy for real-timein vivo detection of breast cancer during surgery[J]. J Transl Med, 2018, 16(1): 367.
[31]Spliethoff J W, Prevoo W, Meier M A J, et al. Real-timein vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: a clinical feasibility study[J]. Clin Cancer Res, 2016, 22(2): 357-365.
[32]Zhang T, Chen J, Lu Y, et al. Identification of technology frontiers of artificial intelligence-assisted pathology based on patent citation network[J]. PLoS One, 2022, 17(8): e0273355.
[33]刘丽娜, 李步洪, 谢树森. 自体荧光技术在早期肠癌诊断中的应用[J]. 激光生物学报, 2013, 22(1): 1-12.
[34]肖寒, 朱焯炜. 激光诱发自体荧光光谱联合内镜技术在肿瘤诊断中的应用[J]. 世界华人消化杂志, 2008, 16(28): 3208-3210.
[35]张文, 王伟, 孙玉鹗, 等. 激光诱发自体荧光光谱区分肺癌组织和正常肺组织[J]. 中国激光医学杂志, 2001(4): 14-17.
[36]吴维超. 基于人工神经网络的荧光光谱和肿瘤标志联合检测在肺癌诊断中的应用[D]. 郑州: 郑州大学, 2008.
[37]Kennedy G T, Azari F S, Bernstein E, et al. Targeted detection of cancer cells during biopsy allows real-time diagnosis of pulmonary nodules[J]. Eur J Nucl Med Mol Imaging, 2022, 49(12): 4194-4204.
[38]Mahmoud A, El-Sharkawy Y H. Delineation and detection of breast cancer using novel label-free fluorescence[J]. BMC Med Imaging, 2023, 23(1): 132.
[39]Jermyn M, Mercier J, Aubertin K, et al. Highly accurate detection of cancer in situ with intraoperative, label-free, multimodal optical spectroscopy[J]. Cancer Res, 2017, 77(14): 3942-3950.
[40]Lin D, Qiu S F, Huang W, et al. Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy forin vivo nasopharyngeal cancer detection[J]. J Biophotonics, 2018, 11(4): e201700251.
[41]杨贤蓓, 王沛豪, 秦齐, 等. 原研多光谱智能分析仪诊断肺腺癌浸润程度的诊断性分析[J]. 中国肺癌杂志, 2023, 26(5): 348-358.
[42]Tian C X, Zhu H, Meng X W, et al. Research for accurate auxiliary diagnosis of lung cancer based on intracellular fluorescent fingerprint information[J]. J Biophotonics, 2023, 16(10): e202300174.
[43]Shu C, Zheng W, Lin K, et al. Real-timein vivo cancer staging of nasopharyngeal carcinoma patients with rapid fiberoptic Raman endoscopy[J]. Talanta, 2023, 259: 124561.
|