[1] Zhou M G, Wang H D, Zeng X Y, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158.
[2] 霍晓川, 高峰. 急性缺血性卒中血管内治疗中国指南2023[J]. 中国卒中杂志, 2023, 18(6): 684-711.
[3] Campbell B C V, De Silva D A, Macleod M R, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 70.
[4] Feigin V L, Brainin M, Norrving B, et al. World Stroke Organization (WSO): global stroke fact sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29.
[5] Copen W A, Lev M H, Rapalino O. Brain perfusion: computed tomography and magnetic resonance techniques[J]. Handb Clin Neurol, 2016, 135: 117-135.
[6] Kalogeris T, Baines C P, Krenz M, et al. Ischemia/reperfusion[J]. Compr Physiol, 2016, 7(1): 113-170.
[7] Wang J D, Zhu Y J, Yang L F, et al. Early diagnosis of cerebral ischemia reperfusion injury and revelation of its regional development by a H3R receptor-directed probe[J]. ACS Sens, 2021, 6(3): 1330-1338.
[8] Geng Y J, Wang Z, Zhou J Y, et al. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress[J]. Chem Soc Rev, 2023, 52(11): 3873-3926.
[9] Liu G T, Liu D, Han X, et al. A hemicyanine-based colorimetric and ratiometric fluorescent probe for selective detection of cysteine and bioimaging in living cell[J]. Talanta, 2017, 170: 406-412.
[10] Yue L, Li G, Chen Z, et al. A “hydroxyl radicals standard” for evaluating the efficacy of anti-asthma drugs by using a two-photon NIR optical sensor[J]. Chem Eng J, 2023, 451: 139019.
[11] Fang C, Deng Q, Zhao K C, et al. Fluorescent probe for investigating the mitochondrial viscosity and hydrogen peroxide changes in cerebral ischemia/reperfusion injury[J]. Anal Chem, 2024, 96(8): 3436-3444.
[12] Cai S T, Liu Q C, Liu C, et al. Rational design of a large stokes shift xanthene-benzothiozolium dyad for probing cysteine in mitochondria[J]. J Mater Chem B, 2022, 10(8): 1265-1271.
[13] Yapici N B, Mandalapu S, Gibson K M, et al. Targeted fluorescent probes for detection of oxidative stress in the mitochondria[J]. Bioorg Med Chem Lett, 2015, 25(17): 3476-3480.
[14] Yao Q C, Li L J, Huang X S, et al. Photostable fluorescent tracker for imaging mitochondria with super resolution[J]. Anal Chem, 2019, 91:1 5777-15783.
[15] Huang Y, Yu F, Wang J, et al. Near-infrared fluorescence probe for in situ detection of superoxide anion and hydrogen polysulfides in mitochondrial oxidative stress[J]. Anal Chem, 2016, 88: 4122-4129.
[16] Wang R, Zhang S, Yang Z, et al. Mutant erythropoietin enhances white matter repair via the JAK2/STAT3 and C/EBPβ pathway in middle-aged mice following cerebral ischemia and reperfusion[J]. Exp Neurol, 2021, 337: 113553.
[17] Shi X, Bai H, Wang J, et al. Behavioral assessment of sensory,motor, emotion, and cognition in rodent models of intracerebral hemorrhage[J]. Front Neurol, 2021, 12: 667511.
[18] Ye Y Z, Jian Z H, Jin T, et al. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice[J]. J Neuroinflammation, 2022, 19(1): 184.
[19] 李晓蕾, 李忠华, 王鹏. STEAP3在脑缺血再灌注损伤沙鼠中的表达及意义[J]. 中国医科大学学报, 2023, 52 (1): 57-61, 67.
[20] Rosales I A, Zhou I Y, Ay I, et al. Imaging kidney inflammation using an oxidatively activated MRI probe[J]. Kidney Int, 2024, 106(4): 671-678.
[21] Sun X, Jiang Q, Zhang Y, et al. Advances in fluorescent probe development for bioimaging of potential Parkinson's biomarkers[J]. Eur J Med Chem, 2024, 267: 116195.
|