[1] Yang Q W, Ciebiera M, Bariani M V, et al. Comprehensive review of uterine fibroids: developmental origin, pathogenesis, and treatment[J]. Endocr Rev, 2022, 43(4): 678-719.
[2] Bhat A S, Singh N A, Rymbai E, et al. Importance of fibrosis in the pathogenesis of uterine leiomyoma and the promising anti-fibrotic effects of dipeptidyl peptidase-4 and fibroblast activation protein inhibitors in the treatment of uterine leiomyoma[J]. Reprod Sci, 2023, 30(5): 1383-1398.
[3] Fedotova M, Barysheva E, Bushueva O. Pathways of hypoxia-inducible factor (HIF) in the orchestration of uterine fibroids development[J]. Life (Basel), 2023, 13(8): 1740.
[4] Wang H, Liang Z, Gou Y, et al. FTO-dependent N(6)-methyladenosine regulates the progression of endometriosis via the ATG5/PKM2 axis[J]. Cell Signal, 2022: 110406.
[5] Chen F, Byrd A L, Liu J P, et al. Polycomb deficiency drives a FOXP2-high aggressive state targetable by epigenetic inhibitors[J]. Nat Commun, 2023, 14(1): 336.
[6] Nong S J, Wang Z W, Wei Z Q, et al. HN1L promotes stem cell-like properties by regulating TGF-β signaling pathway through targeting FOXP2 in prostate cancer[J]. Cell Biol Int, 2022, 46(1): 83-95.
[7] Xu P H, Zhang X, Cao J C, et al. The novel role of circular RNA ST3GAL6 on blocking gastric cancer malignant behaviours through autophagy regulated by the FOXP2/Met/mTOR axis[J]. Clin Transl Med, 2022, 12(1): e707.
[8] Yan L J, Sun H H, Chen Y L, et al. FOXP2 suppresses the proliferation, invasion, and aerobic glycolysis of hepatocellular carcinoma cells by regulating the KDM5A/FBP1 axis[J]. Environ Toxicol, 2024, 39(1): 341-356.
[9] Carbajo-García M C, Corachán A, Juárez-Barber E, et al. Integrative analysis of the DNA methylome and transcriptome in uterine leiomyoma shows altered regulation of genes involved in metabolism, proliferation, extracellular matrix, and vesicles[J]. J Pathol, 2022, 257(5): 663-673.
[10] Ali M, Stone D, Laknaur A, et al. EZH2 activates Wnt/β-catenin signaling in human uterine fibroids, which is inhibited by the natural compound methyl jasmonate[J]. F S Sci, 2023, 4(3): 239-256.
[11] Yao Y X, Li T A, Yu T T, et al. Hedgehog signal activates AMPK via smoothened to promote autophagy and lipid degradation in hepatocytes[J]. Biochem Cell Biol, 2023, 101(4): 284-293.
[12] Yang F, Rodriguez-Blanco J, Long J, et al. A druggable UHRF1/DNMT1/GLI complex regulates sonic Hedgehog-dependent tumor growth[J]. Mol Cancer Res, 2022, 20(11): 1598-1610.
[13] Yu Y H, Zhang H J, Yang F, et al. Curcumol, a major terpenoid from Curcumae Rhizoma, attenuates human uterine leiomyoma cell development via the p38MAPK/NF-κB pathway[J]. J Ethnopharmacol, 2023, 310: 116311.
[14] Li Y G, Chen S H, Zhang X, et al. U2 small nuclear RNA auxiliary factor 2, transcriptionally activated by the transcription factor Dp-1/E2F transcription factor 1 complex, enhances the growth and aerobic glycolysis of leiomyosarcoma cells[J]. Bioengineered, 2022, 13(4): 10200-10212.
[15] Cope B M, Traweek R S, Lazcano R, et al. Targeting the molecular and immunologic features of leiomyosarcoma[J]. Cancers (Basel), 2023, 15(7): 2099.
[16] Chadha M, Huang P H. Proteomic and metabolomic profiling in soft tissue sarcomas[J]. Curr Treat Options Oncol, 2022, 23(1): 78-88.
[17] Coñuecar R, Asela I, Rivera M, et al. DNA facilitates heterodimerization between human transcription factors FoxP1 and FoxP2 by increasing their conformational flexibility[J]. iScience, 2023, 26(7): 107228.
[18] Yang F B, Xiao Z S, Zhang S Z. FOXP2 regulates thyroid cancer cell proliferation and apoptosis via transcriptional activation of RPS6KA6[J]. Exp Ther Med, 2022, 23(6): 434.
[19] Yi J N, Tan S Y, Zeng Y J, et al. Comprehensive analysis of prognostic and immune infiltrates for FOXPs transcription factors in human breast cancer[J]. Sci Rep, 2022, 12(1): 8896.
[20] Liao P, Huang W H, Cao L, et al. Low expression of FOXP2 predicts poor survival and targets caspase-1 to inhibit cell pyroptosis in colorectal cancer[J]. J Cancer, 2022, 13(4): 1181-1192.
[21] Liu L, Chen G, Chen T, et al. si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway[J]. Stem Cell Res Ther, 2020, 11(1): 479.
[22] Zhi X F, Jiang S, Zhang J X, et al. Ubiquitin-specific peptidase 24 accelerates aerobic glycolysis and tumor progression in gastric carcinoma through stabilizing PLK1 to activate NOTCH1[J]. Cancer Sci, 2023, 114(8): 3087-3100.
[23] Liu Y, Tang W T, Ren L, et al. Activation of miR-500a-3p/CDK6 axis suppresses aerobic glycolysis and colorectal cancer progression[J]. J Transl Med, 2022, 20(1): 106.
[24] Pouysségur J, Marchiq I, Parks S K, et al. ‘Warburg effect' controls tumor growth, bacterial, viral infections and immunity—Genetic deconstruction and therapeutic perspectives[J]. Semin Cancer Biol, 2022, 86(Pt 2): 334-346.
[25] Yu X, Li W G, Feng Y J, et al. The prognostic value of hedgehog signaling in bladder cancer by integrated bioinformatics[J]. Sci Rep, 2023, 13(1): 6241.
[26] Garg C, Khan H, Kaur A, et al. Therapeutic implications of sonic hedgehog pathway in metabolic disorders: Novel target for effective treatment[J]. Pharmacol Res, 2022, 179: 106194.
[27] Zhu T, Zheng J Y, Zhuo W, et al. ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling[J]. Cell Death Discov, 2021, 7(1): 126.
[28] Chang W, Chang Q, Lu H D, et al. MiR-221-3p facilitates thyroid cancer cell proliferation and inhibit apoptosis by targeting FOXP2 through hedgehog pathway[J]. Mol Biotechnol, 2022, 64(8): 919-927.
|