[1] Shen X, Zhong Y, Han J, et al. Harness-inspired and fully implantable electronic system for real-time urine volume monitoring[J]. Cell Rep Phys Sci, 2024, 5(11): 102281.
[2] Sun L W, Li C L, Wang S J, et al. Left frontal eye field encodes sound locations during passive listening[J]. Cereb Cortex, 2023, 33(6): 3067-3079.
[3] Tong R J, Su S Y, Liang Y, et al. Functional connectivity encodes sound locations by lateralization angles[J]. Neurosci Bull, 2024, online ahead of print.
[4] Sun L, Zhang W, Wang M, et al. Reading-related brain function restored to normal after articulation training in patients with cleft lip and palate: an fMRI study[J]. Neurosci Bull, 2022, 38(10): 1215-1228.
[5] Chen T, Zhao C, Pan X, et al. Decoding different working memory states during an operation span task from prefrontal fNIRS signals[J]. Biomed Opt Express, 2021, 12(6): 3495-3511.
[6] Li Z, Li C L, Liang Y T, et al. Altered functional connectivity and brain network property in pregnant women with cleft fetuses[J]. Front Psychol, 2019, 10: 2235.
[7] Zhong Y H, Qian B L, Zhu Y G, et al. Development of an implantable wireless and batteryless bladder pressure monitor system for lower urinary tract dysfunction[J]. IEEE J Transl Eng Health Med, 2020, 8: 2500107.
[8] Liu D, Zhao C, Wang W, et al. Altered gray matter volume and functional connectivity in human immunodeficiency virus-infected adults[J]. Front Neurosci, 2020, 14: 601063.
[9] Wang S J, Lin M, Sun L W, et al. Neural mechanisms of hearing recovery for cochlear-implanted patients: an electroencephalogram follow-up study[J]. Front Neurosci, 2020, 14: 624484.
[10] Qu J D, Chang Y T, Sun L W, et al. Deep learning-based approach for the automatic quantification of epicardial adipose tissue from non-contrast CT[J]. Cognit Comput, 2022, 14(4): 1392-1404.
[11] Wang S J, Li C L, Liu Y, et al. Features of beta-gamma phase-amplitude coupling in cochlear implant users derived from EEG[J]. Hear Res, 2023, 428: 108668.
[12] Li Y T, Cao D Z, Qu J D, et al. Automatic detection of scalp high-frequency oscillations based on deep learning[J]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 1627-1636.
[13] Chen T, You W, Zhang L Y, et al. Automated anatomical labeling of the intracranial arteries via deep learning in computed tomography angiography[J]. Front Physiol, 2023, 14: 1310357.
[14] 李刚, 张旭. 生物医学电子学[M]. 北京: 电子工业出版社, 2008.
[15] 张强. 临床工程科研导论[M]. 北京: 人民卫生出版社, 2017.
[16] 魏婧, 王燕, 李霞, 等. 在线教学模式在数字信号处理课程中的应用与思考[J]. 医学教育管理, 2021, 7(5): 507-512.
[17] 金东, 廖洪恩, 张旭. 中国医疗器械关键核心技术和关键零配件现状调研报告(三期)[J]. 中国食品药品监管, 2024(9): 174-181.
[18] 张旭, 金东, 王艳, 等. 中国医疗器械关键核心技术和关键零配件现状研究报告 (CT、核磁、人工智能产品线)[J]. 中国食品药品监管, 2022(9): 148-161.
[19] 张璐, 梁莹, 魏婧, 等. 个性化科研与工程训练课程思政教学方法探索与实践[J]. 医学教育管理, 2023, 9(1): 57-62.
[20] 张璐, 魏婧, 梁莹, 等. 《个性化科研与工程训练》课程线上教学模式的探索与实践[J]. 医学教育管理, 2020, 6(z1): 29-33.
[21] 梁莹, 魏婧, 张璐, 等. 个性化科研与工程训练课程模式的探索与实践[J]. 北京生物医学工程, 2020, 39(6): 630-633, 649.
[22] 薄雪峰, 韩小鹏, 全海英, 等. 生物医学工程专业"双培计划"人才培养实践与思考莜[J]. 医学教育管理, 2021, 7(4): 373-376.
[23] 薄雪峰, 任朝晖, 王燕, 等. 生物医学工程专业电子类课程教学模式改革探索[J]. 北京生物医学工程, 2019, 38(2): 201-205.
[24] 李霞, 张旭, 耿新玲, 等. 生物医学工程专业《信号与系统》双语教学实践与思考[J]. 医学信息, 2015(41): 9.
[25] 王燕, 薄雪峰, 陈艳红, 等. 生物医学工程专业《数字信号处理》课程教学实验的设计[J]. 北京生物医学工程, 2009, 28(6): 630-633.
|