首都医科大学学报 ›› 2025, Vol. 46 ›› Issue (2): 216-227.doi: 10.3969/j.issn.1006-7795.2025.02.007
李清1,赵潇雯2,任敬1,余淼1,崔瀚方1,丁芳园1,刘昊1,李琼1,王凡1,李青1,陈希妍1,路承彪3,李少敏4,赵建华1*
收稿日期:2024-11-20
出版日期:2025-04-21
发布日期:2025-04-14
通讯作者:
赵建华
E-mail:051092@xxmu.edu.cn
基金资助:Li Qing1, Zhao Xiaowen2, Ren Jing1, Yu Miao1, Cui Hanfang1, Ding Fangyuan1, Liu Hao1, Li Qiong1, Wang Fan1, Li Qing1, Chen Xiyan1,Lu Chengbiao3, Li Shaomin4, Zhao Jianhua1*
Received:2024-11-20
Online:2025-04-21
Published:2025-04-14
Supported by:摘要: 目的 探讨血清缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)与脑微出血(cerebral microbleeds,CMBs)及认知功能障碍的相关性, 评估HIF-1α对脑小血管病(cerebral small vessel disease,CSVD)相关认知功能障碍的预测价值。方法 纳入自 2022 年 6 月至 2023 年 11 月就诊于新乡医学院第一附属医院神经内科的CSVD患者104例,对入组患者进行基本资料统计、头颅核磁检查、认知功能评估、血清HIF-1α检测,统计入组患者CMBs的数量和部位,并进行分组,研究HIF-1α与认知功能和CMBs的相关性,分析 CMBs、认知功能障碍的影响因素,评估HIF-1α对认知功能障碍发生的预测价值。结果 不同CMBs严重程度在HIF-1α、认知功能的差异有统计学意义,血清HIF-1α浓度与视空间与执行功能、注意力、延迟回忆呈负相关,与CMBs数量呈正相关, HIF-1α可能是CMBs和CSVD相关认知功能障碍的危险因素,且对CSVD相关认知功能障碍具有潜在的预测价值。结论 血清HIF-1α浓度与CMBs数量及 CSVD相关认知功能障碍有关,血清HIF-1α浓度可能对CSVD相关认知功能障碍有一定的预测价值。
中图分类号:
李清, 赵潇雯, 任敬, 余淼, 崔瀚方, 丁芳园, 刘昊, 李琼, 王凡, 李青, 陈希妍, 路承彪, 李少敏, 赵建华. 血清缺氧诱导因子-1α浓度与脑微出血及认知功能障碍的相关性[J]. 首都医科大学学报, 2025, 46(2): 216-227.
Li Qing, Zhao Xiaowen, Ren Jing, Yu Miao, Cui Hanfang, Ding Fangyuan, Liu Hao, Li Qiong, Wang Fan, Li Qing, Chen Xiyan, Lu Chengbiao, Li Shaomin, Zhao Jianhua. The correlation of serum hypoxia-inducible factor-1α level with cerebral microbleeds and cognitive impairment[J]. Journal of Capital Medical University, 2025, 46(2): 216-227.
| [1]Kitagawa K. Blood pressure management for secondary stroke prevention[J]. Hypertens Res, 2022, 45(6): 936-943. [2]潘杰, 郑鲲鹏. 缺血性脑血管病并发脑微出血患者认知功能的分析[J]. 新疆医科大学学报, 2018, 41 (11): 1384-1387. [3]Zanon Zotin M C, Sveikata L, Viswanathan A, et al. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management[J]. Curr Opin Neurol, 2021, 34(2): 246-257. [4]Chen H X, Ma D, Yue F X, et al. The potential role of hypoxia-inducible factor-1 in the progression and therapy of central nervous system diseases[J]. Curr Neuropharmacol, 2022, 20(9): 1651-1666. [5]Corrado C, Fontana S. Hypoxia and HIF signaling: one axis with divergent effects[J]. Int J Mol Sci, 2020, 21(16): 5611. [6]Kong L L, Ma Y Z, Wang Z Y, et al. Inhibition of hypoxia inducible factor 1 by YC-1 attenuates tissue plasminogen activator induced hemorrhagic transformation by suppressing HMGB1/TLR4/NF-κB mediated neutrophil infiltration in thromboembolic stroke rats[J]. Int Immunopharmacol, 2021, 94: 107507. [7]Long Y, Liu S Y, Wan J Y, et al. Brain targeted borneol-baicalin liposome improves blood-brain barrier integrity after cerebral ischemia-reperfusion injury via inhibiting HIF-1α/VEGF/eNOS/NO signal pathway[J]. Biomed Pharmacother, 2023, 160: 114240. [8]胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726. [9]Lu J H, Li D, Li F, et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study[J]. J Geriatr Psychiatry Neurol, 2011, 24(4): 184-190. [10]Duering M, Biessels G J, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. [11]Puy L, Pasi M, Rodrigues M, et al. Cerebral microbleeds: from depiction to interpretation[J]. J Neurol Neurosurg Psychiatry, 2021: jnnp-2020. [12]Gregoire S M, Chaudhary U J, Brown M M, et al. The microbleed anatomical rating scale (Mars): reliability of a tool to map brain microbleeds[J]. Neurology, 2009, 73(21): 1759-1766. [13]Wardlaw J M, Benveniste H, Nedergaard M, et al. Perivascular spaces in the brain: anatomy, physiology and pathology[J]. Nat Rev Neurol, 2020, 16(3): 137-153. [14]Hussein A S, Shawqi M, Bahbah E I, et al. Do cerebral microbleeds increase the risk of dementia? A systematic review and meta-analysis[J]. IBRO Neurosci Rep, 2023, 14: 86-94. [15]Ding J, Sigurðsson S, Jónsson P V, et al. Space and location of cerebral microbleeds, cognitive decline, and dementia in the community[J]. Neurology, 2017, 88(22): 2089-2097. [16]Akoudad S, Wolters F J, Viswanathan A, et al. Association of cerebral microbleeds with cognitive decline and dementia[J]. JAMA Neurol, 2016, 73(8): 934-943. [17]Graff-Radford J, Lesnick T, Rabinstein A A, et al. Cerebral microbleed incidence, relationship to amyloid burden: The Mayo Clinic Study of Aging[J]. Neurology, 2020, 94(2): e190-e199. [18]Jung Y H, Jang H, Park S B, et al. Strictly lobar microbleeds reflect amyloid angiopathy regardless of cerebral and cerebellar compartments[J]. Stroke, 2020, 51(12): 3600-3607. [19]Kuo P Y, Tsai H H, Lee B C, et al. Differences in lobar microbleed topography in cerebral amyloid angiopathy and hypertensive arteriopathy[J]. Sci Rep, 2024, 14(1): 3774. [20]Incontri D, Marchina S, Andreev A, et al. Etiology of primary cerebellar intracerebral hemorrhage based on topographic localization[J]. Stroke, 2023, 54(12): 3074-3080. [21]Yang R, Li J, Qin Y Y, et al. A bibliometric analysis of cerebral microbleeds and cognitive impairment[J]. Brain Cogn, 2023, 169: 105999. [22]Patel V, Edison P. Cardiometabolic risk factors and neurodegeneration: a review of the mechanisms underlying diabetes, obesity and hypertension in Alzheimers disease[J]. J Neurol Neurosurg Psychiatry, 2024, 95(6): 581-589. [23]Cianchetti F A, Kim D H, Dimiduk S, et al. Stimulus-evoked calcium transients in somatosensory cortex are temporarily inhibited by a nearby microhemorrhage[J]. PLoS One, 2013, 8(5): e65663. [24]Ahn S J, Anrather J, Nishimura N, et al. Diverse inflammatory response after cerebral microbleeds includes coordinated microglial migration and proliferation[J]. Stroke, 2018, 49(7): 1719-1726. [25]Sudduth T L, Powell D K, Smith C D, et al. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation[J]. J Cereb Blood Flow Metab, 2013, 33(5): 708-715. [26]He X F, Lan Y, Zhang Q, et al. Deferoxamine inhibits microglial activation, attenuates blood-brain barrier disruption, rescues dendritic damage, and improves spatial memory in a mouse model of microhemorrhages[J]. J Neurochem, 2016, 138(3): 436-447. [27]Tschoe C, Bushnell C D, Duncan P W, et al. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets[J]. J Stroke, 2020, 22(1): 29-46. [28]Nannoni S, Ohlmeier L, Brown R B, et al. Cognitive impact of cerebral microbleeds in patients with symptomatic small vessel disease[J]. Int J Stroke, 2022, 17(4): 415-424. [29]Wang H L, Zhang C L, Qiu Y M, et al. Dysfunction of the blood-brain barrier in cerebral microbleeds: from bedside to bench[J]. Aging Dis, 2021, 12(8): 1898-1919. [30]Pase M P, Pinheiro A, Rowsthorn E, et al. MRI visible perivascular spaces and the risk of incident mild cognitive impairment in a community sample[J]. J Alzheimers Dis, 2023, 96(1): 103-112. [31]Arba F, Quinn T J, Hankey G J, et al. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack[J]. Int J Stroke, 2018, 13(1): 47-56. [32]Perosa V, Oltmer J, Munting L P, et al. Perivascular space dilation is associated with vascular amyloid-β accumulation in the overlying cortex[J]. Acta Neuropathol, 2022, 143(3): 331-348. [33]Riba-Llena I, Jiménez-Balado J, Castaé X, et al. Arterial stiffness is associated with basal ganglia enlarged perivascular spaces and cerebral small vessel disease load[J]. Stroke, 2018, 49(5): 1279-1281. [34]Yin C L, Ma Y J. The regulatory mechanism of hypoxia-inducible factor 1 and its clinical significance[J]. Curr Mol Pharmacol, 2024, 17: e18761429266116. [35]Qian Y, Li X, Fan R F, et al. MicroRNA-31 inhibits traumatic brain injury-triggered neuronal cell apoptosis by regulating hypoxia-inducible factor-1A/vascular endothelial growth factor A axis[J]. Neuroreport, 2022, 33(1): 1-12. [36]Yuan D, Guan S X, Wang Z, et al. HIF-1α aggravated traumatic brain injury by NLRP3 inflammasome-mediated pyroptosis and activation of microglia[J]. J Chem Neuroanat, 2021, 116: 101994. [37]Tsao C C, Baumann J, Huang S F, et al. Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome[J]. Angiogenesis, 2021, 24(4): 823-842. [38]Lei L, Feng J, Wu G, et al. HIF-1α causes LCMT1/PP2A deficiency and mediates Tau hyperphosphorylation and cognitive dysfunction during chronic hypoxia[J]. Int J Mol Sci, 2022, 23(24): 16140. [39]Alexander C, Li T, Hattori Y, et al. Hypoxia inducible factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion[J]. Mol Psychiatry, 2022, 27(10): 4264-4273. [40]Li J, Tao T, Xu J, et al. HIF-1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia-reperfusion injury in a rat MCAO model[J]. Int J Mol Med, 2020, 45(4): 1027-1036. [41]Mojsilovic-Petrovic J, Callaghan D, Cui H, et al. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes[J]. J Neuroinflammation, 2007, 4: 12. [42]Hao H F, Hou Y X, Li A C, et al. HIF-1α promotes astrocytic production of macrophage migration inhibitory factor following spinal cord injury[J]. CNS Neurosci Ther, 2023, 29(12): 3802-3814. [43]Page S, Raut S, Al-Ahmad A. Oxygen-glucose deprivation/reoxygenation-induced barrier disruption at the human blood-brain barrier is partially mediated through the HIF-1 pathway[J]. Neuromolecular Med, 2019, 21(4): 414-431. [44]He Q Y, Ma Y Z, Liu J, et al. Biological functions and regulatory mechanisms of hypoxia-nducible factor-1α in ischemic stroke[J]. Front Immunol, 2021, 12: 801985. [45]王瑾. 脑小血管病患者血清VEGF水平与脑白质高信号和非痴呆型认知功能障碍的相关性研究[D]. 新乡: 新乡医学院, 2022. [46]Zhao J H, Wang X T, Yu M, et al. The relevance of serum macrophage migration inhibitory factor level and executive function in patients with white matter hyperintensity in cerebral small vessel disease[J]. Brain Sci, 2023, 13(4): 616. [47]Zhao J H, Yang F L, Peng X, et al. Is matrix metalloproteinase-9 associated with post-stroke cognitive impairment or dementia?[J]. J Integr Neurosci, 2022, 21(6): 160. [48]Che P, Zhang J, Yu M Q, et al. DL-3-n-butylphthalide promotes synaptic plasticity by activating the Akt/ERK signaling pathway and reduces the blood-brain barrier leakage by inhibiting the HIF-1α/MMP signaling pathway in vascular dementia model mice[J]. CNS Neurosci Ther, 2023, 29(5): 1392-1404. [49]Han C Y, Zhai L P, Shen H P, et al. Advanced glycation end-products (AGEs) promote endothelial cell pyroptosis under cerebral ischemia and hypoxia via HIF-1α-RAGE-NLRP3[J]. Mol Neurobiol, 2023, 60(5): 2355-2366. |
| [1] | 郭宇, 陈伟观, 周三连, 汤莉巧, 孙王妍, 张冬梅, 卢红建. 急性缺血性脑卒中患者血清糖蛋白非转移性黑色素瘤蛋白B蛋白浓度与疾病严重度及预后的相关性分析[J]. 首都医科大学学报, 2025, 46(4): 702-709. |
| [2] | 蒋忱冠, 刘演, 杨舟, 李秉心, 张建国, 石林. 丘脑底核脑深部电刺激对帕金森患者非运动症状长期疗效研究进展[J]. 首都医科大学学报, 2025, 46(4): 733-741. |
| [3] | 霍碧岫, 贾竑晓, 宁艳哲, 郑思思. 冠状动脉粥样硬化性心脏病心气虚证患者自上而下和自下而上注意模式的异常[J]. 首都医科大学学报, 2025, 46(3): 455-462. |
| [4] | 冼淑连, 贾竑晓, 李雪, 王娣, 宋明康.尹冬青, 姜海荣. 抗精神病药物所致的代谢综合征中医证型分布规律研究[J]. 首都医科大学学报, 2025, 46(3): 463-470. |
| [5] | 李雪, 贾竑晓, 朱虹, 冯正田, 郑思思, 吴子遥, 段宇. 基于网络分析方法的广泛性焦虑障碍中医核心证素研究[J]. 首都医科大学学报, 2025, 46(3): 471-478. |
| [6] | 尹冬青, 贾竑晓, 李雪, 郑思思, 宁艳哲. 清热解郁方治疗双相抑郁火热内郁证的随机双盲对照研究[J]. 首都医科大学学报, 2025, 46(3): 479-486. |
| [7] | 李玥, 陈俊逾, 常春雷, 张静. 基于NLRP3/IL-18/NF-κB通路探讨化痰安神方改善神经元细胞凋亡的作用机制[J]. 首都医科大学学报, 2025, 46(3): 487-495. |
| [8] | 霍碧岫, 贾竑晓, 宁艳哲. 冠状动脉动脉粥样硬化性心脏病患者认知功能下降的研究进展 [J]. 首都医科大学学报, 2025, 46(3): 496-502. |
| [9] | 任倩薇, 周思怡, 金鑫悦, 郭馥祯, 管仲军. 城市社区居民卒中相关影响因素分析:基于倾向评分匹配的病例对照研究[J]. 首都医科大学学报, 2025, 46(3): 520-526. |
| [10] | 王拥军, 刘涛, 刘子阳, 熊云云, 荆京, 谢雪微, 李子孝. 人工智能在脑血管病领域中的应用[J]. 首都医科大学学报, 2025, 46(2): 177-183. |
| [11] | 齐涵, 董程程, 刘瑞, 朱雪泉, 蔺煦舟, 秦妍舒, 于子博, 王海宁, 李蕾, 冯媛, 张玲, 闫芳. 抑郁症患者体质量指数和代谢综合征转移规律研究[J]. 首都医科大学学报, 2025, 46(2): 202-209. |
| [12] | 景娇, 张思瑶, 刘艳伶, 王芬, 肖伟, 王振中. 银杏二萜内酯葡胺注射液对有无大动脉粥样硬化型急性缺血性脑卒中患者的有效性研究[J]. 首都医科大学学报, 2025, 46(2): 228-233. |
| [13] | 字晓慧, 夏雪, 李静, 张晓丽, 周全, 王安心, 王伊龙. 抗血小板治疗在静脉溶栓卒中患者中的应用研究进展[J]. 首都医科大学学报, 2025, 46(2): 234-242. |
| [14] | 伍琳, 孙君昭, 韩铖琛, 聂幸幸, 田宇红, 皮红英. 远端缺血适应对自发性脑出血患者的应用效果观察 [J]. 首都医科大学学报, 2025, 46(2): 356-362. |
| [15] | 董 晓, 张婉莹, 吉训明, 吴川杰. 《2024年美国心脏学会/美国卒中学会卒中一级预防指南》概述[J]. 首都医科大学学报, 2025, 46(1): 1-5. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||