[1] Donnelly C A, Boyd I, Campbell P, et al. Four principles to make evidence synthesis more useful for policy[J]. Nature, 2018, 558(7710):361-364.
[2] Elliott J, Lawrence R, Minx J C, et al. Decision makers need constantly updated evidence synthesis[J]. Nature, 2021, 600(7889):383-385.
[3] Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic reviews a day: how will we ever keep up?[J]. PLoS Med, 2010, 7(9):e1000326.
[4] Borah R, Brown A W, Capers P L, et al. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry[J]. BMJ Open, 2017, 7(2):e012545.
[5] Vardakas K Z, Tsopanakisc G, Poulopoulouc A, et al. An analysis of factors contributing to PubMed's growth[J]. J Informetr, 2015, 9(3):592-617.
[6] Dunn A G, Bourgeois F T. Is it time for computable evidence synthesis?[J]. J Am Med Inform Assoc, 2020, 27(6):972-975.
[7] Sebire N J, Cake C, Morris A D. HDR UK supporting mobilising computable biomedical knowledge in the UK[J]. BMJ Health Care Inform, 2020, 27(2):e100122.
[8] 杜建, 孔桂兰, 李鹏飞, 等. 可计算医学知识的基本概念与实现路径[J]. 情报学报, 2021, 40(11):1221-1233.
[9] Flynn A J, Friedman C P, Boisvert P, et al. The Knowledge Object Reference Ontology (KORO):a formalism to support management and sharing of computable biomedical knowledge for learning health systems[J]. Learn Health Syst, 2018, 2(2):e10054.
[10] Bodenreider O. Biomedical ontologies in action: role in knowledge management, data integration and decision support[J]. Yearb Med Inform, 2008, 47(Suppl 1):S67-S79.
[11] Kang B, Yoon J, Kim H Y, et al. Deep-learning-based automated terminology mapping in OMOP-CDM[J]. J Am Med Inform Assoc, 2021, 28(7):1489-1496.
[12] Wang L, Xie H M, Han W T, et al. Construction of a knowledge graph for diabetes complications from expert-reviewed clinical evidences[J]. Comput Assist Surg, 2020, 25(1):29-35.
[13] Nye B, Jessy Li J, Patel R, et al. A corpus with multi-level annotations of patients, interventions and outcomes to support language processing for medical literature[J]. Proc Conf Assoc Comput Linguist Meet, 2018,2018:197-207.
[14] Marshall I J, Nye B, Kuiper J, et al. Trialstreamer: a living, automatically updated database of clinical trial reports[J]. J Am Med Inform Assoc, 2020, 27(12):1903-1912.
[15] Tasneem A, Aberle L, Ananth H, et al. The database for aggregate analysis of ClinicalTrials.gov (AACT) and subsequent regrouping by clinical specialty[J]. PLoS One, 2012, 7(3):e33677.
[16] Du J C, Wang Q, Wang J Q, et al. COVID-19 trial graph: a linked graph for COVID-19 clinical trials[J]. J Am Med Inform Assoc, 2021, 28(9):1964-1969.
[17] Chen Z Q, Peng B, Ioannidis V N, et al. A knowledge graph of clinical trials ([Formula: see text])[J]. Sci Rep, 2022, 12(1):4724.
[18] Nye B E, Nenkova A, Marshall I J, et al. Trialstreamer: mapping and browsing medical evidence in real-time[J]. Proc Conf, 2020, 2020: 63-69.
[19] 王杨, 郎欣月, 朱熠冰, 等. 临床意义与统计学意义结合的临床试验结果分类方法及评价研究[J]. 中华流行病学杂志, 2021, 42(7):1280-1285.
[20] Mayer T, Marro S, Cabrio E, et al. Enhancing evidence-based medicine with natural language argumentative analysis of clinical trials[J]. Artif Intell Med, 2021, 118: 102098.
[21] Miron L, Gonçalves R S, Musen M A. Obstacles to the reuse of study metadata in ClinicalTrials.gov[J]. Sci Data, 2020, 7(1):443.
[22] Liu Y, Elsworth B, Erola P, et al. EpiGraphDB: a database and data mining platform for health data science[J]. Bioinformatics, 2021, 37(9):1304-1311.
[23] Huang H C, Dong Z Y. Research on architecture and query performance based on distributed graph database Neo4j[C]//2013 3rd International Conference on Consumer Electronics, Communications and Networks. New York, USA: IEEE, 2013: 533-536.
[24] Francis N, Green A, Guagliardo P, et al. Cypher: an evolving query language for property graphs[C]//Proceedings of the 2018 International Conference on Management of Data. Houston,TX:ACM,2018:1433-1445.
[25] Hripcsak G, Duke J D, Shah N H, et al. Observational Health Data Sciences and Informatics (OHDSI):opportunities for observational researchers[C]//15th World Congress on Health and Biomedical Informatics, MEDINFO 2015. Sao Paulo: IOS Press, 2015: 574-578.
[26] Alper B S, Dehnbostel J, Afzal M, et al. Making science computable: developing code systems for statistics, study design, and risk of bias[J]. J Biomed Inform, 2021, 115: 103685.
[27] Williams M, Richesson R L, Bray B E, et al. Summary of third annual MCBK public meeting: mobilizing computable biomedical knowledge-accelerating the second knowledge revolution[J]. Learn Health Syst, 2020, 5(1):e10255.
[28] Morales D R, Conover M M, You S C, et al. Renin-angiotensin system blockers and susceptibility to COVID-19: an international, open science, cohort analysis[J]. Lancet Digit Health, 2021, 3(2):e98-e114. |