[1]Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention ofchronic obstructive pulmonary disease(2023 REPORT)[EB/OL]. (2022-11-14)[2023-01-01].https://goldcopd.org/.
[2]Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China [the China Pulmonary Health (CPH) study]: a national cross-sectional study[J]. Lancet, 2018, 391(10131):1706-1717.
[3] 《慢性阻塞性肺疾病免疫调节治疗专家共识》撰写组.慢性阻塞性肺疾病免疫调节治疗专家共识[J].中国全科医学.2022, 25 (24):2947-2959.
[4]Zhou J S, Li Z Y, Xu X C, et al. Cigarette smoke-initiated autoimmunity facilitates sensitisation to elastin-induced COPD-like pathologies in mice[J]. Eur Respir J, 2020,56(3):2000404.
[5]Caramori G, Ruggeri P, Di Stefano A, et al. Autoimmunity and COPD: clinical implications[J]. Chest, 2018, 153(6):1424-1431.
[6]Kemény , Csek K, Szitter I, et al. Integrative characterization of chronic cigarette smoke-induced cardiopulmonary comorbidities in a mouse model[J]. Environ Pollut,2017,229:746-759.
[7]Wright J L, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease[J]. Am J Physiol Lung Cell Mol Physiol,2008,295(1):L1-15.
[8]Fricker M, Deane A, Hansbro P M. Animal models of chronic obstructive pulmonary disease[J]. Expert Opin Drug Discov, 2014,9(6):629-645.
[9]Ying S, O’Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease[J]. J Immunol, 2008,181(4):2790-2798.
[10]Hao W, Li M, Pang Y, et al. Increased chemokines levels in patients with chronic obstructive pulmonary disease: correlation with quantitative computed tomography metrics[J]. Br J Radiol, 2021, 94(1118):20201030.
[11]Roos A B, Sandén C, Mori M, et al. IL-17A is elevated in end-stage chronic obstructive pulmonary disease and contributes to cigarette smoke-induced lymphoid neogenesis[J]. Am J Respir Crit Care Med, 2015,191(11):1232-1241.
[12]Doe C, Bafadhel M, Siddiqui S, et al. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD[J]. Chest, 2010,138(5):1140-1147.
[13]Wu M, Lai T, Jing D, et al. Epithelium-derived IL17A promotes cigarette smoke-induced inflammation and mucus hyperproduction[J]. Am J Respir Cell Mol Biol, 2021,65(6):581-592.
[14]Chen K, Pociask D A, McAleer J P, et al. IL-17RA is required for CCL2 expression, macrophage recruitment, and emphysema in response to cigarette smoke[J]. PLoS One, 2011,6(5):e20333.
[15]Mills K H G. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23(1):38-54.
[16]Song C, Lee J S, Gilfillan S et al. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation[J]. J Exp Med, 2015, 212(11):1869-1882.
[17]Blomme E, Provoost S, Bracke K,R et al. Quantification of innate lymphoid cell subsets in a mouse model of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2018,197:A4757.
[18]Karmaus P W F, Chen X, Lim S A,et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity[J]. Nature, 2019,565(7737):101-105.
[19]Zhu J. T helper cell differentiation, heterogeneity, and plasticity[J]. Cold Spring Harb Perspect Biol, 2018,10(10):a030338.
[20]Bal S M, Golebski K, Spits H. Plasticity of innate lymphoid cell subsets[J]. Nat Rev Immunol, 2020,20(9):552-565.
[21]Krabbendam L, Bal S M, Spits H, et al. New insights into the function, development, and plasticity of type 2 innate lymphoid cells[J]. Immunol Rev, 2018,286(1):74-85.
|