[1] Mendichovszky I, Jackson A. Imaging hypoxia in gliomas[J]. Br J Radiol, 2011, 84(Spec Iss 2): S145-S158.
[2] Fink J R, Muzi M, Peck M, et al. Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging[J]. J Nucl Med, 2015, 56(10): 1554-1561.
[3] Provenzale J M, York G, Moya M G, et al. Correlation of relative permeability and relative cerebral blood volume in high-grade cerebral neoplasms[J]. AJR Am J Roentgenol, 2006, 187(4): 1036-1042.
[4] Lüdemann L, Warmuth C, Plotkin M, et al. Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H215O positron emission tomography[J]. Eur J Radiol, 2009, 70(3): 465-474.
[5] Essig M, Shiroishi M S, Nguyen T B, et al. Perfusion MRI: the five most frequently asked technical questions[J]. AJR Am J Roentgenol, 2013, 200(1): 24-34.
[6] Fan A P, Jahanian H, Holdsworth S J, et al. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review[J]. J Cereb Blood Flow Metab, 2016, 36(5): 842-861.
[7] Raichle M E, Eichling J O, Straatmann M G, et al. Blood-brain barrier permeability of 11C-labeled alcohols and 15O-labeled water[J]. Am J Physiol, 1976, 230(2): 543-552.
[8] Walsh M N, Bergmann S R, Steele R L, et al. Delineation of impaired regional myocardial perfusion by positron emission tomography with H2(15)O[J]. Circulation, 1988, 78(3): 612-620.
[9] Bacharach S L, Libutti S K, Carrasquillo J A. Measuring tumor blood flow with H215O: practical considerations[J]. Nucl Med Biol, 2000, 27(7): 671-676.
[10] La Fougère C, Suchorska B, Bartenstein P, et al. Molecular imaging of gliomas with PET: opportunities and limitations[J]. Neuro Oncol, 2011, 13(8): 806-819.
[11] Nariai T, Senda M, Ishii K, et al. Three-dimensional imaging of cortical structure, function and glioma for tumor resection[J]. J Nucl Med, 1997, 38(10): 1563-1568.
[12] Okada H, Weller M, Huang R, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group[J]. Lancet Oncol, 2015, 16(15): e534-e542.
[13] Albano D, Giubbini R, Bertagna F. 13N-NH3 PET/CT in oncological disease[J]. Jpn J Radiol, 2019, 37(12): 799-807.
[14] Zhang X S, Shi X C, Yi C, et al. 13N-NH3 versus F-18 FDG in detection of intracranial meningioma: initial report[J]. Clin Nucl Med, 2011, 36(11): 1003-1006.
[15] Yi C, Shi X C, Zhang X Z, et al. The role of 13N-ammonia in the differential diagnosis of gliomas and brain inflammatory lesions[J]. Ann Nucl Med, 2019, 33(1): 61-67.
[16] He Q, Zhang L Q, Zhang B, et al. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma[J]. BMC Cancer, 2019, 19(1): 332.
[17] Shi X C, Yi C, Wang X Y, et al. 13N-ammonia combined with 18F-FDG could discriminate between necrotic high-grade gliomas and brain abscess[J]. Clin Nucl Med, 2015, 40(3): 195-199.
[18] Khangembam B C, Sharma P, Karunanithi S, et al. 13N-ammonia PET/CT for detection of recurrent glioma: a prospective comparison with contrast-enhanced MRI[J]. Nucl Med Commun, 2013, 34(11): 1046-1054.
[19] Beer A J, Haubner R, Wolf I, et al. PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging αvβ3 expression[J]. J Nucl Med, 2006, 47(5): 763-769.
[20] Minamimoto R, Jamali M, Barkhodari A, et al. Biodistribution of the 18F-FPPRGDZ PET radiopharmaceutical in cancer patients: an atlas of SUV measurements[J]. Eur J Nucl Med Mol Imaging, 2015, 42(12): 1850-1858.
[21] Iagaru A, Mosci C, Mittra E, et al. Glioblastoma multiforme recurrence: an exploratory study of 18F FPPRGD2 PET/CT[J]. Radiology, 2015, 277(2): 497-506.
[22] Li D L, Zhao X B, Zhang L W, et al. 68Ga-PRGD2 PET/CT in the evaluation of glioma: a prospective study[J]. Mol Pharm, 2014, 11(11): 3923-3929.
[23] Isal S, Pierson J, Imbert L, et al. PET imaging of 68Ga-NODAGA-RGD, as compared with 18F-fluorodeoxyglucose, in experimental rodent models of engrafted glioblastoma[J]. EJNMMI Res, 2018, 8(1): 51.
[24] Provost C, Prignon A, Rozenblum-Beddok L, et al. Comparison and evaluation of two RGD peptides labelled with 68Ga or 18F for PET imaging of angiogenesis in animal models of human glioblastoma or lung carcinoma[J]. Oncotarget, 2018, 9(27): 19307-19316.
[25] Cai W B, Chen K, Mohamedali K A, et al. PET of vascular endothelial growth factor receptor expression[J]. J Nucl Med, 2006, 47(12): 2048-2056.
[26] Chen K, Cai W B, Li Z B, et al. Quantitative PET imaging of VEGF receptor expression[J]. Mol Imaging Biol, 2009, 11(1): 15-22.
[27] Hsu A R, Cai W B, Veeravagu A, et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel[J]. J Nucl Med, 2007, 48(3): 445-454.
[28] Jansen M H, Veldhuijzen Van Zanten S E M, Van Vuurden D G, et al. Molecular drug imaging: 89Zr-bevacizumab PET in children with diffuse intrinsic pontine glioma[J]. J Nucl Med, 2017, 58(5): 711-716.
[29] Lesniak W G, Chu C Y, Jablonska A, et al. A distinct advantage to intraarterial delivery of 89Zr-bevacizumab in PET imaging of mice with and without osmotic opening of the blood-brain barrier[J]. J Nucl Med, 2019, 60(5): 617-622.
[30] Roncaroli F, Su Z J, Herholz K, et al. TSPO expression in brain tumours: is TSPO a target for brain tumour imaging?[J]. Clin Transl Imaging, 2016, 4: 145-156.
[31] Cistaro A, Caobelli F, Quartuccio N, et al. Uncommon 18F-FDG-PET/CT findings in patients affected by limbic encephalitis: hyper-hypometabolic pattern with double antibody positivity and migrating foci of hypermetabolism[J]. Clin Imaging, 2015, 39(2): 329-333.
[32] Cistaro A, Cuccurullo V, Quartuccio N, et al. Role of PET and SPECT in the study of amyotrophic lateral sclerosis[J]. Biomed Res Int, 2014, 2014: 237437.
[33] Dupont A C, Largeau B, Santiago Ribeiro M J, et al. Translocator protein-18 kDa (TSPO) positron emission tomography (PET) imaging and its clinical impact in neurodegenerative diseases[J]. Int J Mol Sci, 2017, 18(4): 785.
[34] Quartuccio N, Van Weehaeghe D, Cistaro A, et al. Positron emission tomography neuroimaging in amyotrophic lateral sclerosis: what is new?[J]. Q J Nucl Med Mol Imaging, 2014, 58(4): 344-354.
[35] Janczar K, Su Z J, Raccagni I, et al. The 18-kDa mitochondrial translocator protein in gliomas: from the bench to bedside[J]. Biochem Soc Trans, 2015, 43(4): 579-585.
[36] Junck L, Olson J M, Ciliax B J, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site[J]. Ann Neurol, 1989, 26(6): 752-758.
[37] Buck J R, McKinley E T, Hight M R, et al. Quantitative, preclinical PET of translocator protein expression in glioma using 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline[J]. J Nucl Med, 2011, 52(1): 107-114.
[38] Perrone M, Moon B S, Park H S, et al. A novel PET imaging probe for the detection and monitoring of translocator protein 18 kDa expression in pathological disorders[J]. Sci Rep, 2016, 6: 20422.
[39] Su Z J, Herholz K, Gerhard A, et al. [11C]-(R)Pk11195 tracer kinetics in the brain of glioma patients and a comparison of two referencing approaches[J]. Eur J Nucl Med Mol Imaging, 2013, 40(9): 1406-1419.
[40] Su Z, Roncaroli F, Durrenberger P F, et al. The 18-kDa mitochondrial translocator protein in human gliomas: an 11C-(R)Pk11195 PET imaging and neuropathology study[J]. J Nucl Med, 2015, 56(4): 512-517.
[41] Takaya S, Hashikawa K Z, Turkheimer F E, et al. The lack of expression of the peripheral benzodiazepine receptor characterises microglial response in anaplastic astrocytomas[J]. J Neurooncol, 2007, 85(1): 95-103.
[42] Tang D W, Hight M R, McKinley E T, et al. Quantitative preclinical imaging of TSPO expression in glioma using N,N-diethyl-2-(2-(4-(2-18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide[J]. J Nucl Med, 2012, 53(2): 287-294.
[43] Choudhary G, Langen K J, Galldiks N, et al. Investigational PET tracers for high-grade gliomas[J]. Q J Nucl Med Mol Imaging, 2018, 62(3): 281-294.
[44] Blair A, Zmuda F, Malviya G, et al. A novel 18F-labelled high affinity agent for PET imaging of the translocator protein[J]. Chem Sci, 2015, 6(8): 4772-4777.
[45] James M L, Fulton R R, Vercoullie J, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization[J]. J Nucl Med, 2008, 49(5): 814-822.
[46] Unterrainer M, Fleischmann D F, Vettermann F, et al. TSPO PET, tumour grading and molecular genetics in histologically verified glioma: a correlative 18F-GE-180 PET study[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1368-1380.
[47] Albert N L, Unterrainer M, Fleischmann D F, et al. TSPO PET for glioma imaging using the novel ligand 18F-GE-180: first results in patients with glioblastoma[J]. Eur J Nucl Med Mol Imaging, 2017, 44(13): 2230-2238.
[48] Gagliardi F, Narayanan A, Reni M, et al. The role of CXCR4 in highly malignant human gliomas biology: current knowledge and future directions[J]. Glia, 2014, 62(7): 1015-1023.
[49] Hartimath S V, Van Waarde A, Dierckx R A J O, et al. Evaluation of N-[11C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model[J]. Mol Pharm, 2014, 11(11): 3810-3817.
[50] Wang Z, Zhang M R, Wang L, et al. Prospective study of 68Ga-NOTA-NFB: radiation dosimetry in healthy volunteers and first application in glioma patients[J]. Theranostics, 2015, 5(8): 882-889.
[51] Nadeem Abbas M, Kausar S, Wang F, et al. Advances in targeting the epidermal growth factor receptor pathway by synthetic products and its regulation by epigenetic modulators as a therapy for glioblastoma[J]. Cells, 2019, 8(4): 350.
[52] Sun J K, Cai L, Zhang K, et al. A pilot study on EGFR-targeted molecular imaging of PET/CT with 11C-PD153035 in human gliomas[J]. Clin Nucl Med, 2014, 39(1): e20-e26.
[53] Oude Munnink T H, Arjaans M E, Timmer-Bosscha H, et al. PET with the 89Zr-labeled transforming growth factor-β antibody fresolimumab in tumor models[J]. J Nucl Med, 2011, 52(12): 2001-2008.
[54] Den Hollander M W, Bensch F, Glaudemans A W J M, et al. TGF-β antibody uptake in recurrent high-grade glioma imaged with 89Zr-fresolimumab PET[J]. J Nucl Med, 2015, 56(9): 1310-1314.
[55] Rhrich M, Loktev A, Wefers A K, et al. IDH-wildtype glioblastomas and grade Ⅲ/Ⅳ IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein-specific PET/CT[J]. Eur J Nucl Med Mol Imaging, 2019, 46(12): 2569-2580.
[56] Rhrich M, Floca R, Loi L, et al. FAP-specific PET signaling shows a moderately positive correlation with relative CBV and no correlation with ADC in 13 IDH wildtype glioblastomas[J]. Eur J Radiol, 2020, 127: 109021.
[57] Beinat C, Alam I S, James M L, et al. Development of [18F]DASA-23 for imaging tumor glycolysis through noninvasive measurement of pyruvate kinase M2[J]. Mol Imaging Biol, 2017, 19(5): 665-672.
[58] Beinat C, Patel C B, Haywood T, et al. Human biodistribution and radiation dosimetry of [18F]DASA-23, a PET probe targeting pyruvate kinase M2[J]. Eur J Nucl Med Mol Imaging, 2020, 47(9): 2123-2130. |