[1]Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[2]Sakach E, O'Regan R, Meisel J, et al. Molecular classification of triple negative breast cancer and the emergence of targeted therapies[J]. Clin Breast Cancer, 2021, 21(6): 509-520.
[3]Nelson M A, Ngamcherdtrakul W, Luoh S W, et al. Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer[J]. Cancer Metastasis Rev, 2021, 40(2): 519-536.
[4]Denkert C, Von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol, 2018, 19(1): 40-50.
[5]Luen S J, Salgado R, Dieci M V, et al. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy[J]. Ann Oncol, 2019, 30(2): 236-242.
[6]丁耘峰, 黄惠莲, 徐炜, 等. 三阴性乳腺癌组织中PD-1/PD-L1轴表达与TILs关系及临床病意义[J]. 临床肿瘤学杂志, 2021, 26(2): 140-145.
[7]Loi S, Drubay D, Adams S, et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers[J]. J Clin Oncol, 2019, 37(7): 559-569.
[8]Dieci M V, Tsvetkova V, Griguolo G, et al. Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: analysis of 244 stage Ⅰ-Ⅲ patients treated with standard therapy[J]. Eur J Cancer, 2020, 136: 7-15.
[9]钟恋君, 王进京, 郑洪. 三阴型乳腺癌间质肿瘤浸润淋巴细胞CD4、CD8、Foxp3和PD-L1表达的临床病理意义[J]. 临床与实验病理学杂志, 2022, 38(3): 278-283, 288.
[10]Goda N, Nakashima C, Nagamine I, et al. The effect of intratumoral interrelation among FOXP3+ regulatory T cells on treatment response and survival in triple-negative breast cancer[J]. Cancers (Basel), 2022, 14(9): 2138.
[11]Yao S, Zhu Y W, Chen L P. Advances in targeting cell surface signalling molecules for immune modulation[J]. Nat Rev Drug Discov, 2013, 12(2): 130-146.
[12]Quintana Á, Peg V, Prat A, et al. Immune analysis of lymph nodes in relation to the presence or absence of tumor infiltrating lymphocytes in triple-negative breast cancer[J]. Eur J Cancer, 2021, 148: 134-145.
[13]Liu J N, Kong X S, Huang T, et al. Clinical implications of aberrant PD-1 and CTLA4 expression for cancer immunity and prognosis: a pan-cancer study[J]. Front Immunol, 2020, 11: 2048.
[14]Vardas V, Tolios A, Christopoulou A, et al. Immune checkpoint and EMT-related molecules in circulating tumor cells (CTCs) from triple negative breast cancer patients and their clinical impact[J]. Cancers (Basel), 2023, 15(7): 1974.
[15]Quezada S A, Peggs K S. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer[J]. Br J Cancer, 2013, 108(8): 1560-1565.
[16]Hoda R S, Brogi E, Dos Anjos C H, et al. Clinical and pathologic features associated with PD-L1 (SP142) expression in stromal tumor-infiltrating immune cells of triple-negative breast carcinoma[J]. Mod Pathol, 2020, 33(11): 2221-2232.
[17]Sun X J, Zhai J, Sun B H, et al. Effector memory cytotoxic CD3+/CD8+/CD45RO+ T cells are predictive of good survival and a lower risk of recurrence in triple-negative breast cancer[J]. Mod Pathol, 2022, 35(5): 601-608.
[18]刘鲁宁, 陈雪梅, 马恩奇, 等. 人CD137抗体促进NK细胞对乳腺癌细胞特异性杀伤作用的体外研究[J]. 中华细胞与干细胞杂志: 电子版, 2020, 10(6): 346-353.
[19]Jin H, Choi H, Kim E S, et al. Natural killer cells inhibit breast cancer cell invasion through downregulation of urokinase-type plasminogen activator[J]. Oncol Rep, 2021, 45(1): 299-308.
[20]Milling L E, Garafola D, Agarwal Y, et al. Neoadjuvant sting activation, extended half-life IL2, and checkpoint blockade promote metastasis clearance via sustained NK-cell activation[J]. Cancer Immunol Res, 2022, 10(1): 26-39.
[21]Ding S N, Qiao N, Zhu Q C, et al. Single-cell atlas reveals a distinct immune profile fostered by T cell-B cell crosstalk in triple negative breast cancer[J]. Cancer Commun (Lond), 2023, 43(6): 661-684.
[22]Yang M, Ma B, Shao H S, et al. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells[J]. BMC Cancer, 2016, 16: 419.
[23]Noy R, Pollard J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61.
[24]Steenbrugge J, Breyne K, Demeyere K, et al. Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 191.
[25]Yuan Z Y, Luo R Z, Peng R J, et al. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis[J]. Onco Targets Ther, 2014, 7: 1475-1480.
[26]Jamiyan T, Kuroda H, Yamaguchi R, et al. CD68- and CD163-positive tumor-associated macrophages in triple negative cancer of the breast[J]. Virchows Arch, 2020, 477(6): 767-775.
[27]Bao X W, Shi R, Zhao T Y, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC[J]. Cancer Immunol Immunother, 2021, 70(1): 189-202.
[28]Fridlender Z G, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: "N1" versus "N2" TAN[J]. Cancer Cell, 2009, 16(3): 183-194.
[29]Wei B J, Yao M Y, Xing C Y, et al. The neutrophil lymphocyte ratio is associated with breast cancer prognosis: an updated systematic review and meta-analysis[J]. Onco Targets Ther, 2016, 9: 5567-5575.
[30]Gao S M, Tang W J, Zuo B L, et al. The predictive value of neutrophil-to-lymphocyte ratio for overall survival and pathological complete response in breast cancer patients receiving neoadjuvant chemotherapy[J]. Front Oncol, 2022, 12: 1065606.
[31]Schott A F, Goldstein L J, Cristofanilli M, et al. Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer[J]. Clin Cancer Res, 2017, 23(18): 5358-5365.
[32]Li K D, Liu T, Chen J, et al. Survivin in breast cancer-derived exosomes activates fibroblasts by up-regulating SOD1, whose feedback promotes cancer proliferation and metastasis[J]. J Biol Chem, 2020, 295(40): 13737-13752.
[33]Liubomirski Y, Lerrer S, Meshel T, et al. Notch-mediated tumor-stroma-inflammation networks promote invasive properties and CXCL8 expression in triple-negative breast cancer[J]. Front Immunol, 2019, 10: 804.
[34]Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer[J]. Cancer Cell, 2018, 33(3): 463-479.e10.
[35]Alcaraz L B, Mallavialle A, Mollevi C, et al. SPARC in cancer-associated fibroblasts is an independent poor prognostic factor in non-metastatic triple-negative breast cancer and exhibits pro-tumor activity[J]. Int J Cancer, 2023, 152(6): 1243-1258.
[36]Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion[J]. Cancer Res, 2011, 71(7): 2455-2465.
[37]Zhao C R, Wu M, Zeng N, et al. Cancer-associated adipocytes: emerging supporters in breast cancer[J]. J Exp Clin Cancer Res, 2020, 39(1): 156.
[38]Zhang C Y, Yue C Y, Herrmann A, et al. STAT3 Activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth[J]. Cell Metab, 2020, 31(1): 148-161.e5.
[39]Liu Q, Dong H T, Zhao T T, et al. Cancer-associated adipocytes release FUCA2 to promote aggressiveness in TNBC[J]. Endocr Relat Cancer, 2022, 29(3): 139-149.
[40]Alshetaiwi H, Pervolarakis N, McIntyre L L, et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics[J]. Sci Immunol, 2020, 5(44): eaay6017.
[41]Kumar V, Donthireddy L, Marvel D, et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors[J]. Cancer Cell, 2017, 32(5): 654-668.e5.
[42]Vito A, Salem O, El-Sayes N, et al. Immune checkpoint blockade in triple negative breast cancer influenced by B cells through myeloid-derived suppressor cells[J]. Commun Biol, 2021, 4(1): 859.
[43]Pickup M W, Mouw J K, Weaver V M. The extracellular matrix modulates the hallmarks of cancer[J]. EMBO Rep, 2014, 15(12): 1243-1253.
[44]Hayashi M, Yamamoto Y, Ibusuki M, et al. Evaluation of tumor stiffness by elastography is predictive for pathologic complete response to neoadjuvant chemotherapy in patients with breast cancer[J]. Ann Surg Oncol, 2012, 19(9): 3042-3049.
[45]Turunen S P, Tatti-Bugaeva O, Lehti K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(11 Pt A): 1974-1988.
|