首都医科大学学报 ›› 2026, Vol. 47 ›› Issue (1): 150-156.doi: 10.3969/j.issn.1006-7795.2026.01.019

• 临床研究 • 上一篇    下一篇

成年住院精神分裂症患者中锥体外系不良反应的预测模型比较研究

刘大卫1,成佩霞2, 3,王茜4,王肖南1,祝慧萍2,3,高琦1*   

  1. 1.首都医科大学公共卫生学院流行病与卫生统计学系, 北京 100069;2.首都医科大学公共卫生学院儿少卫生与妇幼保健学系, 北京 100069;3.首都医科大学遗传环境与生殖健康实验室, 北京 100069;4.首都医科大学附属北京安定医院精神科, 北京 100088
  • 收稿日期:2025-11-17 修回日期:2025-12-03 出版日期:2026-02-21 发布日期:2026-02-02
  • 通讯作者: 高琦 E-mail:gaoqi@ccmu.edu.cn
  • 基金资助:
    首都卫生发展科研专项(首发2024-2G-4262)。

Comparative study of prediction models of antipsychotic extrapyramidal adverse reactions in adult inpatients with schizophrenia

Liu Dawei1, Cheng Peixia2,3, Wang Qian4, Wang Xiaonan1, Zhu Huiping2,3, Gao Qi1*   

  1. 1.Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China; 2. Department of Child Health and Maternal and Child Health, School of Public Health, Capital Medical University, Beijing 100069, China; 3. Laboratory of Genetic Environment and Reproductive Health, Capital Medical University, Beijing 100069, China; 4. Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
  • Received:2025-11-17 Revised:2025-12-03 Online:2026-02-21 Published:2026-02-02
  • Supported by:
    This study was supported by Capitals Funds for Health Improvement and Research (CFH 2024-2G-4262).

摘要: 目的  对成年住院精神分裂症患者使用抗精神病药发生的锥体外系不良反应,采用不同算法建立预测模型并进行比较。方法  回顾性收集首都医科大学附属北京安定医院2010—2018年的电子病历系统数据,使用正则化方法进行文本挖掘得到结构化临床资料。通过弹性网络模型筛选进入预测模型的变量,采用11种算法构建预测模型,并以灵敏度、特异度、阳性预测值、阴性预测值、受试者工作特征曲线下面积和决策曲线分析综合比较,效果最佳者使用Shapley加性解释法(shapley additive explanations,SHAP)可视化预测因子的贡献。结果  锥体外系不良反应发生率为41.09%。在构建的预测模型中,CatBoost表现最佳(AUC=0.89),SHAP摘要图可视化了预测因子的贡献大小。结论  对不良反应发生预测最佳的模型为CatBoost,优于最新的算法TabPFN;最重要的危险因素为服用氟哌啶醇、住院时间长等。

关键词: 抗精神病药, 锥体外系不良反应, 预测模型, 精神分裂症, 住院, 电子病历系统, 机器学习

Abstract: Objective  To establish prediction models by using different algorithms for extrapyramidal adverse reactions to antipsychotic drugs in adult hospitalized patients with schizophrenia,and compare them. Methods  Data from the electronic health record system of Beijing Anding Hospital Capital Medical University from 2010 to 2018 was retrospectively collected, and regularization methods to conduct text mining were used to obtain structured clinical data. By using an elastic network model to screen variables that enter the models, 11 algorithms were used to construct prediction models. The sensitivity, specificity, positive predictive value, negative predictive value, area under the curve and decision curve analysis were compared comprehensively. The best performing model was visualized by using Shapley additive explanations to determine the contribution of the prediction factors. Results  The incidence of extrapyramidal adverse reactions to antipsychotic drugs was 41.09%. In the constructed prediction models, CatBoost performed the best (AUC=0.89), and the SHAP summary graph visualized the contributions of predictors. Conclusion  The best model for predicting adverse reactions is CatBoost, which is superior to the latest algorithm TabPFN. The most important risk factors are haloperidol and length of hospital stay.

Key words: antipsychotic drugs, extrapyramidal adverse reactions, prediction model, schizophrenia, hospitalization, electronic health record system, machine learning

中图分类号: