[1] Khaku A S, Tadi P, Gunn A A. Cerebrovascular disease (nursing)[M]. Treasure Island (FL): StatPearls Publishing,2021.
[2] GBD 2021 Nervous System Disorders Collaborators. Global, regional and national burden of disorders affecting the nervous system,1990-2021: a systematic analysis for the global burden of disease study 2021[J]. Lancet Neurol, 2024, 23(4): 344-381.
[3] Sahraeian S M E, Fang L T, Karagiannis K, et al. Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample[J]. Genome Biol, 2022, 23(1): 12.
[4] Hager P, Jungmann F, Holland R, et al. Evaluation and mitigation of the limitations of large language models in clinical decision-making[J]. Nat Med, 2024, 30(9): 2613-2622.
[5] Mccarthy J, Minsky M L, Rochester N, et al. A proposal for the Dartmouth summer research project on artificial intelligence, August 31,1955[J]. AI Mag, 2006, 27(4): 12.
[6] Minsky M. Steps toward artificial intelligence[J]. Proc IRE, 1961, 49(1): 8-30.
[7] Sarirete A, Balfagih Z, Brahimi T, et al. Artificial intelligence and machine learning research: towards digital transformation at a global scale[J].J Ambient Intell Human Comput, 2022, 13: 3319-3321.
[8] Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6): 84-90.
[10] Bi W L, Hosny A, Schabath M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
[11] Thavanesan N, Farahi A, Parfitt C, et al. Insights from explainable AI in oesophageal cancer team decisions[J]. Comput Biol Med, 2024, 180: 108978.
[12] Bonkhoff A K, Grefkes C. Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence[J]. Brain, 2022, 145(2): 457-475.
[13] Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases[J]. Trends Pharmacol Sci, 2023, 44(7): 411-424.
[14] Avanzo M, Wei L S, Stancanello J, et al. Machine and deep learning methods for radiomics[J]. Med Phys, 2020, 47(5): e185-e202.
[15] Tran K A, Kondrashova O, Bradley A, et al. Deep learning in cancer diagnosis, prognosis and treatment selection[J]. Genome Med, 2021, 13(1): 152.
[16] Su K, Xu L, Li G Q, et al. Forecasting influenza activity using self-adaptive AI model and multi-source data in Chongqing, China[J]. EBioMedicine, 2019, 47: 284-292.
[17] DeLong J H, Ohashi S N, O'Connor K C, et al. Inflammatory responses after ischemic stroke[J]. Semin Immunopathol, 2022, 44(5): 625-648.
[18] Datta A, Sarmah D, Mounica L, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy[J]. Transl Stroke Res, 2020, 11(6): 1185-1202.
[19] Jung S, Song M K, Lee E, et al. Predicting ischemic stroke in patients with atrial fibrillation using machine learning[J]. Front Biosci, 2022, 27(3): 80.
[20] Bacchi S, Zerner T, Oakden-Rayner L, et al. Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: a pilot study[J]. Acad Radiol, 2020, 27(2): e19-e23.
[21] Stib M T, Vasquez J, Dong M P, et al. Detecting large vessel occlusion at multiphase CT angiography by using a deep convolutional neural network[J]. Radiology, 2020, 297(3): 640-649.
[22] Lu J, Zhou Y R, Lv W Z, et al. Identification of early invisible acute ischemic stroke in non-contrast computed tomography using two-stage deep-learning model[J]. Theranostics, 2022, 12(12): 5564-5573.
[23] Wang C, Shi Z, Yang M, et al. Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA[J]. J Cereb Blood Flow Metab, 2021, 41(11): 3028-3038.
[24] Wen R, Wang M R, Bian W, et al. Machine learning-based prediction of symptomatic intracerebral hemorrhage after intravenous thrombolysis for stroke: a large multicenter study[J]. Front Neurol, 2023, 14: 1247492.
[25] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组.中国脑出血诊治指南(2019)[J]. 中华神经科杂志, 2019, 52(12): 994-1005.
[26] O'Carroll C B, Brown B L, Freeman W D. Intracerebral hemorrhage: a common yet disproportionately deadly stroke subtype[J]. Mayo Clin Proc, 2021, 96(6): 1639-1654.
[27] Wang X Y, Shen T, Yang S, et al. A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans[J]. Neuroimage Clin, 2021, 32: 102785.
[28] Dhar R, Falcone G J, Chen Y S, et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage[J]. Stroke, 2020, 51(2): 648-651.
[29] Li H, Xie Y A, Liu H, et al. Non-contrast CT-based radiomics score for predicting hematoma enlargement in spontaneous intracerebral hemorrhage[J]. Clin Neuroradiol, 2022, 32(2): 517-528.
[30] Claassen J, Park S. Spontaneous subarachnoid haemorrhage[J]. Lancet, 2022, 400(10355): 846-862.
[31] Thompson B G, Brown R D J, Amin-Hanjani S, et al. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2015, 46(8): 2368-2400.
[32] Etminan N, Rinkel G J. Unruptured intracranial aneurysms: development, rupture and preventive management[J]. Nat Rev Neurol, 2016, 12(12): 699-713.
[33] Zhu W, Li W Q, Tian Z B, et al. Stability assessment of intracranial aneurysms using machine learning based on clinical and morphological features[J]. Transl Stroke Res, 2020, 11(6): 1287-1295.
[34] Detmer F J, Lückehe D, Mut F, et al. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment[J]. Int J Comput Assist Radiol Surg, 2020, 15(1): 141-150.
[35] Yang Y, Liu Q Y, Jiang P J, et al. Multidimensional predicting model of intracranial aneurysm stability with backpropagation neural network: a preliminary study[J]. Neurol Sci, 2021, 42(12): 5007-5019.
[36] Xiong W, Chen T, Li J, et al. Interpretable machine learning model to predict rupture of small intracranial aneurysms and facilitate clinical decision[J]. Neurol Sci, 2022, 43: 6371-6379.
|