首都医科大学学报 ›› 2025, Vol. 46 ›› Issue (1): 99-105.doi: 10.3969/j.issn.1006-7795.2025.01.016

• 医学图像分析在心脑疾病诊断及预测中的应用 • 上一篇    下一篇

心外膜脂肪影像分割量化方法及其临床应用的研究进展

屈俊达1,  杨敏福2,  李春林1,  孙立伟1,  高  赫1,  张  旭1*   

  1. 1.首都医科大学生物医学工程学院,北京 100069; 2.首都医科大学附属北京朝阳医院核医学科,北京 100020
  • 收稿日期:2024-10-24 出版日期:2025-02-21 发布日期:2025-02-25
  • 通讯作者: 张 旭 E-mail:zhangxu@ccmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62171300,82272036,62301343)。

Research progress on imaging segmentation and quantification methods for epicardial adipose tissue and its clinical applications

Qu Junda1, Yang Minfu2, Li Chunlin1, Sun Liwei1, Gao He1, Zhang Xu1*   

  1. 1.School of Biomedical Engineering, Capital Medical University, Beijing 100069, China;2.Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2024-10-24 Online:2025-02-21 Published:2025-02-25
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (62171300, 82272036, 62301343).

摘要: 心外膜脂肪(epicardial adipose tissue,EAT)是紧邻冠状动脉和心肌的脂肪组织,通过自分泌或旁分泌活性因子对机体造成生理和病理性的改变。EAT被认为是心血管疾病的诊断标志物和潜在的治疗靶点,分割量化EAT具有重要意义。本文从传统影像、图谱及人工智能三个方面介绍EAT分割量化方法的演变过程,并对自动量化的EAT指标在心血管疾病诊疗中的研究进展进行综述。

关键词: 心外膜脂肪, 分割及量化, 深度学习, 临床应用

Abstract: Epicardial adipose tissue (EAT) is a type of fat tissue that is closely adjacent to the coronary arteries and myocardium, and it caused physiological and pathological changes to the body through the secretion of autocrine and paracrine active factors. EAT is regarded as a diagnostic marker and a potential therapeutic target for cardiovascular diseases, and it is of great significance to segment and quantify EAT. This article introduced the evolution of the EAT segmentation and quantification methods from the aspects of traditional imaging, atlas, and artificial intelligence. Furthermore, it reviewed the research progresses on automatically quantified EAT indices in the diagnosis and treatment of cardiovascular diseases.

Key words: epicardial adipose tissue, segmentation and quantification, deep learning, clinical application

中图分类号: