[1] Vaduganathan M, Mensah G A, Turco J V, et al. The global burden of cardiovascular diseases and risk: a compass for future health[J]. J Am Coll Cardiol, 2022, 80(25): 2361-2371.
[2] World Health Organization. Monitoring health for the sustainable development goals (SDGs)[M]. Geneva: World Health Organization, 2016.
[3] World Health Organization. Monitoring health for the SDGs, sustainable development goals[M]. Geneva: World Health Organization, 2023: 130.
[4] Tarsitano M G, Pandozzi C, Muscogiuri G, et al. Epicardial adipose tissue: a novel potential imaging marker of comorbidities caused by chronic inflammation[J]. Nutrients, 2022, 14(14): 2926.
[5] Fang W, Xie S, Deng W. Epicardial adipose tissue: a potential therapeutic target for cardiovascular diseases[J]. J Cardiovasc Transl Res, 2023, 17(2): 322-333.
[6] Monti C B, Codari M, De Cecco C N, et al. Novel imaging biomarkers: epicardial adipose tissue evaluation[J]. Br J Radiol, 2020, 93(1113): 20190770.
[7] Commandeur F, Goeller M, Betancur J, et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT[J]. IEEE Trans Med Imaging, 2018, 37(8): 1835-1846.
[8] Abdulkareem M, Brahier M S, Zou F W, et al. Quantification of epicardial adipose tissue volume and attenuation for cardiac CT scans using deep learning in a single multi-task framework[J]. Rev Cardiovasc Med, 2022, 23(12): 412.
[9] He X X, Guo B J, Lei Y, et al. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography[J]. Phys Med Biol, 2020, 65(9): 095012.
[10] Zhang Q, Zhou J H, Zhang B, et al. Automatic epicardial fat segmentation and quantification of CT scans using dual U-nets with a morphological processing layer[J]. IEEE Access, 2020, 8: 128032-128041.
[11] Li Y F, Song S N, Sun Y, et al. Segmentation and volume quantification of epicardial adipose tissue in computed tomography images[J]. Med Phys, 2022, 49(10): 6477-6490.
[12] Hoori A, Hu T, Lee J, et al. Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans[J]. Sci Rep, 2022, 12(1): 2276.
[13] Iacobellis G, Assael F, Ribaudo M C, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction[J]. Obes Res, 2003, 11(2): 304-310.
[14] 周茜洋, 唐春香, 杨桂芬, 等. 心包脂肪影像学的研究进展[J]. 国际医学放射学杂志, 2020, 43(4): 447-451.
[15] Iacobellis G. Epicardial adipose tissue in contemporary cardiology[J]. Nat Rev Cardiol, 2022, 19(9): 593-606.
[16] Priya C, Sudha S. Adaptive fruitfly based modified region growing algorithm for cardiac fat segmentation using optimal neural network[J]. J Med Syst, 2019, 43(5): 104.
[17] Rodrigues É O, Morais F F, Morais N A, et al. A novel approach for the automated segmentation and volume quantification of cardiac fats on computed tomography[J]. Comput Methods Programs Biomed, 2016,123:109-128.
[18] Zlokolica V, Krstanovic L, Velicki L, et al. Semiautomatic epicardial fat segmentation based on fuzzy c-means clustering and geometric ellipse fitting[J]. J Healthc Eng, 2017, 2017: 5817970.
[19] Dey D, Suzuki Y, Suzuki S, et al. Automated quantitation of pericardiac fat from noncontrast CT[J]. Invest Radiol, 2008, 43(2): 145-153.
[20] Coppini G, Favilla R, Marraccini P, et al. Quantification of epicardial fat by cardiac CT imaging[J]. Open Med Inform J, 2010, 4:126-135.
[21] Gauβ S, Klinghammer L, Jahn D, et al. Epicardial fat and coronary artery calcification in patients on long-term hemodialysis[J]. J Comput Assist Tomogr, 2014, 38(5): 768-772.
[22] Zheng Y F, Vega-Higuera F, Zhou S K, et al. Fast and automatic heart isolation in 3D CT volumes: optimal shape initialization[C]//International workshop on machine learning in medical imaging. Heidelberg: Springer, 2010: 84-91.
[23] Militello C, Rundo L, Toia P, et al. A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans[J]. Comput Biol Med, 2019, 114: 103424.
[24] Barbosa J G, Figueiredo B, Bettencourt N, et al. Towards automatic quantification of the epicardial fat in non-contrasted CT images[J]. Comput Methods Biomech Biomed Engin, 2011, 14(10): 905-914.
[25] Rebelo A F, Ferreira A M, Fonseca J M. Automatic epicardial fat segmentation and volume quantification on non-contrast cardiac computed tomography[J]. Comput Methods Programs Biomed Update, 2022, 2: 100079.
[26] Benc∨evic′ M, Galic′ I, Habijan M, et al. Recent progress in epicardial and pericardial adipose tissue segmentation and quantification based on deep learning: a systematic review[J]. Appl Sci, 2022, 12(10): 5217.
[27] Ding X W, Terzopoulos D, Diaz-Zamudio M, et al. Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT[J]. Med Phys, 2015, 42(9): 5015-5026.
[28] Norlén A, Alvén J, Molnar D, et al. Automatic pericardium segmentation and quantification of epicardial fat from computed tomography angiography[J]. J Med Imaging (Bellingham), 2016, 3(3): 034003.
[29] Shahzad R, Bos D, Metz C, et al. Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach[J]. Med Phys, 2013, 40(9): 091910.
[30] Ding X W, Terzopoulos D, Diaz-Zamudio M, et al. Automated epicardial fat volume quantification from non-contrast CT[C]//SPIE medical imaging. San Diego: SPIE, 2014: 90340I.
[31] Rodrigues É O, Cordeiro de Morais F F, Conci A. On the automated segmentation of epicardial and mediastinal cardiac adipose tissues using classification algorithms[J]. Stud Health Technol Inform, 2015, 216: 726-730.
[32] Cao J, Zhao A, Zhang Z. Automatic image annotation method based on a convolutional neural network with threshold optimization[J]. PLoS One, 2020, 15(9): e0238956.
[33] Commandeur F, Goeller M, Razipour A, et al. Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study[J]. Radiol Artif Intell, 2019, 1(6): e190045.
[34] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241.
[35] Eisenberg E, McElhinney P A, Commandeur F, et al. Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects[J]. Circ Cardiovasc Imaging, 2020, 13(2): e009829.
[36] Commandeur F, Slomka P J, Goeller M, et al. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study[J]. Cardiovasc Res, 2020, 116(14): 2216-2225.
[37] Tamarappoo B K, Lin A, Commandeur F, et al. Machine learning integration of circulating and imaging biomarkers for explainable patient-specific prediction of cardiac events: a prospective study[J]. Atherosclerosis, 2021, 318: 76-82.
[38] Lin A, Wong N D, Razipour A, et al. Metabolic syndrome, fatty liver, and artificial intelligence-based epicardial adipose tissue measures predict long-term risk of cardiac events: a prospective study[J]. Cardiovasc Diabetol, 2021, 20(1): 27.
[39] Slipczuk L, Castagna F, Schonberger A, et al. Coronary artery calcification and epicardial adipose tissue as independent predictors of mortality in COVID-19[J]. Int J Cardiovasc Imaging, 2021, 37(10): 3093-3100.
[40] Slipczuk L, Castagna F, Schonberger A, et al. Incidence of new-onset atrial fibrillation in COVID-19 is associated with increased epicardial adipose tissue[J]. J Interv Card Electrophysiol, 2022, 64(2): 383-391.
[41] Bartoli A, Fournel J, Ait-Yahia L, et al. Automatic deep-learning segmentation of epicardial adipose tissue from low-dose chest CT and prognosis impact on COVID-19[J]. Cells, 2022, 11(6): 1034.
[42] Molnar D, Bjrnson E, Larsson M, et al. Pre-diabetes is associated with attenuation rather than volume of epicardial adipose tissue on computed tomography[J]. Sci Rep, 2023, 13(1): 1623.
[43] Kroll L, Nassenstein K, Jochims M, et al. Assessing the role of pericardial fat as a biomarker connected to coronary calcification-a deep learning based approach using fully automated body composition analysis[J]. J Clin Med, 2021, 10(2): 356.
[44] Wang Z G, Zhang J H, Zhang A X A, et al. The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina[J]. Heliyon, 2023, 9(5): e15738.
[45] You H R, Zhang R R, Hu J S, et al. Performance of radiomics models based on coronary computed tomography angiography in predicting the risk of major adverse cardiovascular events within 3 years: a comparison between the pericoronary adipose tissue model and the epicardial adipose tissue model[J]. Acad Radiol, 2023, 30(3): 390-401.
[46] Zhang L, Xu Z, Jiang B, et al. Machine-learning-based radiomics identifies atrial fibrillation on the epicardial fat in contrast-enhanced and non-enhanced chest CT[J]. Br J Radiol, 2022, 95(1135): 20211274.
[47] Ilyushenkova J, Sazonova S, Popov E, et al. Radiomic phenotype of epicardial adipose tissue in the prognosis of atrial fibrillation recurrence after catheter ablation in patients with lone atrial fibrillation[J]. J Arrhythm, 2022, 38(5): 682-693.
[48] Yang M, Cao Q, Xu Z, et al. Development and validation of a machine learning-based radiomics model on cardiac computed tomography of epicardial adipose tissue in predicting characteristics and recurrence of atrial fibrillation[J]. Front Cardiovasc Med, 2022, 9: 813085.
[49] Deng Y S, Liu Z, Wang X M, et al. Radiomics signature of epicardial adipose tissue for predicting postoperative atrial fibrillation after off-pump coronary artery bypass surgery[J]. Rev Cardiovasc Med, 2023, 24(11): 327.
[50] Liu Z, Deng Y, Wang X, et al. Radiomics signature of epicardial adipose tissue for predicting postoperative atrial fibrillation after pulmonary endarterectomy[J]. Front Cardiovasc Med, 2023, 9: 1046931.
[51] 仝珊, 吉庆伟, 李伟, 等. 不同冠心病患者心外膜脂肪CT测量指标的变化及其意义[J].心肺血管病杂志, 2021, 40 (1): 16-20.
|