[1] Sun J, Yuan Z, Abajas Y L, et al. A retrospective study of the cytokine profile changes in mice with FⅧ inhibitor development after adeno-associated virus-mediated gene therapy in a hemophilia a mouse model[J]. Human Gene Therapy, 2018,29(3):381-389. [2] Astermark J. Inhibitor development:patient-determined risk factors[J]. Haemophilia, 2010, 16(102):66-70. [3] Gardner D, Jeffery L E, Sansom D M. Understanding the CD28/CTLA-4(CD152) pathway and its implications for costimulatory blockade[J]. Am J Transplant, 2014, 14(9):1985-1991. [4] Wiest M, Upchurch K, Yin W, et al. Clinical implications of CD4+ T cell subsets in adult atopic asthma patients[J]. Allergy Asthma Clin Immunol, 2018, 14:7. [5] 李刚,陈振萍,甄英姿,等. 血友病A患儿血浆纠正实验与凝血因子Ⅷ抑制物相关性研究[J]. 中华检验医学杂志,2015,38(7):480-483. [6] 李刚,陈振萍,唐凌,等. 血浆纠正试验差值在血友病A患儿抑制物中的诊断价值[J]. 检验医学与临床,2015(23):3451-3452, 3455. [7] 周敏,唐凌,吴润晖,等. 中国儿童血友病诊断现状多中心研究[J]. 中华实用儿科临床杂志,2017,32(5):361-364. [8] 王天有,吴润晖. 迈进儿童血友病关怀新时代[J]. 中国实用儿科杂志,2017,33(1):18-22. [9] 王莹,王京华. 血友病A凝血因子Ⅷ抑制物的形成因素和治疗[J]. 临床荟萃,2014,29(1):101-104. [10] 魏琪琪,吴润晖. 血友病患者的免疫耐受诱导治疗:依据及前景[J]. 血栓与止血学,2014,20(4):209-214. [11] 吴润晖,魏琪琪. 血友病抑制物的产生与防治对策[J]. 中华儿科杂志,2013,51(8):631-634. [12] Yao W, Xiao J, Cheng X, et al. The efficacy of recombinant FⅧ low-dose prophylaxis in Chinese pediatric patients with severe hemophilia a:a retrospective analysis from the reCARE study[J]. Clin Appl Thrombo/Hemost, 2016, 23(7):851-858. [13] 魏琪琪,唐凌,陈振萍,等. 单中心儿童血友病A抑制物累积发生率及危险因素[J]. 中华实用儿科临床杂志,2017,23(7):851-858. [14] Collins P W, Chalmers E, Hart D P, et al. Diagnosis and treatment of factor Ⅷ and IX inhibitors in congenital haemophilia:(4th edition). UK Haemophilia Centre Doctors Organization[J]. Br J Haematol, 2013, 160(2):153-170. [15] Viel K R, Ameri A, Abshire T C, et al. Inhibitors of factor Ⅷ in black patients with hemophilia[J]. N Engl J Med, 2009, 360(16):1618-1627. [16] Chuansumrit A, Sasanakul W, Sirachainan N, et al. Association of factor Ⅷ and factor IX mutations, HLA Class Ⅱ, tumour necrosis factor-alpha and interleukin-10 on inhibitor development among Thai haemophilia A and B patients[J]. Haemophilia, 2017, 23(6):e518-e523. [17] Gouw S C, van den Berg H M, Fischer K, et al. Intensity of factor Ⅷ treatment and inhibitor development in children with severe hemophilia A:the RODIN study[J]. Blood, 2013, 121(20):4046-4055. [18] Salomon B, Bluestone J A. Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation[J]. Annu Rev Immunol, 2001, 19:225-252. [19] Zumerle S, Molon B, Viola A. Membrane rafts in T cell activation:a spotlight on CD28 Costimulation[J]. Front Immunol, 2017, 8:1467. [20] Rowshanravan B, Halliday N, Sansom D M. CTLA-4:a moving target in immunotherapy[J]. Blood, 2018, 131(1):58-67. [21] Salomon B, Lenschow D J, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes[J]. Immunity, 2000, 12(4):431-440. [22] 张晓慧, 刘新, 白丽,等. 肝脏CD4+CD25+Foxp3+调节性T细胞在小鼠急、慢性肝损伤中的表达差异及意义[J] 首都医科大学学报, 2014, 35(4):483-487. [23] Walker L S. Treg and CTLA-4:Two intertwining pathways to immune tolerance[J]. J Autoimmun, 2013, 45:49-57. |