[1] Wang J, Chen T, Shan G. miR-148b regulates proliferation and differentiation of neural stem cells via Wnt/beta-Catenin signaling in rat ischemic stroke model[J]. Front Cell Neurosci, 2017, 11:329. [2] Xu X, Ge S, Jia R, et al. Hypoxia-induced miR-181b enhances angiogenesis of retinoblastoma cells by targeting PDCD10 and GATA6[J]. Oncol Rep, 2015, 33(6):2789-2796. [3] Hori D, Dunkerly-Eyring B, Nomura Y, et al. miR-181b regulates vascular stiffness age dependently in part by regulating TGF-beta signaling[J]. PLoS One, 2017, 12(3):e0174108. [4] Banzet S, Chennaoui M, Girard O, et al. Changes in circulating microRNAs levels with exercise modality[J]. J Appl Physiol (1985), 2013, 115(9):1237-1244. [5] Sun X, Icli B, Wara A K, et al. MicroRNA-181b regulates NF-kappa B-mediated vascular inflammation[J]. J Clin Invest, 2012, 122(6):1973-1990. [6] Zhou Y, Wu Q. Corin in natriuretic peptide processing and hypertension[J]. Curr Hypertens Rep, 2014, 16(2):415, 448 [7] Gao Z, Wang L, Wang J, et al. Molecular mechanism of miR-181b in heart disease due to pregnancy-induced hypertension syndrome[J]. Exp Ther Med, 2017, 14(4):2953-2959. [8] Petrovic N, Davidovic R, Jovanovic-Cupic S, et al. Changes in miR-221/222 levels in invasive and in situ carcinomas of the breast:differences in association with estrogen receptorand TIMP3 expression levels[J]. Mol Diagn Ther, 2016, 20(6):603-615. [9] Tomé-Canrneiro J, Larr Ao'X sa M, Yáñez-Gasc Ao'X n M J, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease[J]. Pharmacol Res, 2013, 72:69-82. [10] Wu M Y, Li C J, Hou M F, et al. New insights into the role of inflammation in the pathogenesis of atherosclerosis[J]. Int J Mol Sci, 2017, 18(10):pii:E2034. [11] Majesky M W. Vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2016, 36(10):e82-e86. [12] Sun X, He S, Wara A K M, et al. Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice[J]. Circ Res, 2014, 114(1):32-40. [13] Lin J, He S, Sun X, et al. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10[J]. FASEB J, 2016, 30(9):3216-3226. [14] Deng Y, Kong J. Urinary trypsin inhibitor reduced inflammation response induced by hyperlipidemia[J]. J Cardiovasc Pharmacol Ther, 2015, 20(6):572-578. [15] Frangogiannis N G, Smith C W, Entman M L. The inflammatory response in myocardial infarction[J]. Cardiovasc Res, 2002, 53(1):31-47. [16] Zhang Y, Wang F, Lan Y, et al. Roles of microRNA-146a and microRNA-181b in regulating the secretion of tumor necrosis factor-alpha and interleukin-1beta in silicon dioxide-induced NR8383 rat macrophages[J]. Mol Med Rep, 2015, 12(4):5587-5593. [17] Heinrich P C, Behrmann I, MullER-Newen G, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway[J]. Biochem J, 1998, 334(Pt 2):297-314. [18] Andreasen S, Therkildsen M H, Grauslund M, et al. Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland[J]. APMIS, 2015, 123(8):706-715. [19] Cervigne N K, Reis P P, Machado J, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma[J]. Hum Mol Genet, 2009, 18(24):4818-4829. [20] Iliopoulos D, Jaeger S A, Hirsch H A, et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer[J]. Mol Cell, 2010, 39(4):493-506. [21] Sun X, Lin J, Zhang Y, et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue[J]. Circ Res, 2016, 118(5):810-821. [22] Li X, Cao G. Potential role of microRNA-181b on atherosclerosis[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2015, 43(6):516-520. [23] Li T J, Chen Y L, Gua C J, et al. MicroRNA 181b promotes vascular smooth muscle cells proliferation through activation of PI3K and MAPK pathways[J]. Int J Clin Exp Pathol, 2015, 8(9):10375-10384. [24] Di Gregoli K, Mohamad Anuar N N, Bianco R, et al. MicroRNA-181b controls atherosclerosis and aneurysms through regulation of TIMP-3 and elastin[J]. Circ Res, 2017, 120(1):49-65. [25] Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis[J]. J Cell Mol Med, 2010, 14(1-2):70-78. [26] Hulsmans M, Sinnaeve P, Van der Schueren B, et al. Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease[J]. J Clin Endocrinol Metab, 2012, 97(7):E1213-E1218. [27] Guo F, Tang C, Li Y, et al. The interplay of LncRNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-kappaB signalling pathway[J]. J Cell Mol Med, 2018, 22(10):5062-5075. [28] Carlos T M, Harlan J M. Leukocyte-endothelial adhesion molecules[J]. Blood, 1994, 84(7):2068-2101. [29] Mathieu P, Boulanger M C. Basic mechanisms of calcific aortic valve disease[J]. Can J Cardiol, 2014, 30(9):982-993. [30] Heath J M, Fernandez Esmerats J, Khambouneheuang L, et al. Mechanosensitive microRNA-181b regulates aortic valve endothelial matrix degradation by targeting TIMP3[J]. Cardiovasc Eng Technol, 2018, 9(2):141-150. [31] Perrotta I, Sciangula A, Aquila S, et al. Matrix metalloproteinase-9 expression in calcified human aortic valves:a histopathologic, immunohistochemical, and ultrastructural study[J]. Appl Immunohistochem Mol Morphol, 2016, 24(2):128-137. [32] Jiang X, Ning Q, Wang J. Angiotensin Ⅱ induced differentially expressed microRNAs in adult rat cardiac fibroblasts[J]. J Physiol Sci, 2013, 63(1):31-38. [33] Copier C U, Le Ao'X n L, Fernández M, et al. Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy[J]. Sci Rep, 2017, 7(1):13514. [34] Dobaczewski M, Chen W, Frangogiannis N G. Transforming growth factor (TGF)-beta signaling in cardiac remodeling[J]. J Mol Cell Cardiol, 2011, 51(4):600-606. [35] Muslin A J. MAPK signalling in cardiovascular health and disease:molecular mechanisms and therapeutic targets[J]. Clin Sci (Lond), 2008, 115(7):203-218. [36] Oka T, Akazawa H, Naito A T, et al. Angiogenesis and cardiac hypertrophy:maintenance of cardiac function and causative roles in heart failure[J]. Circ Res, 2014, 114(3):565-571. [37] Zhong W, Yang J, Cao Q, et al. Association between miR-181b and PKG 1 in myocardial hypertrophy and its clinical implications[J]. Exp Ther Med, 2015, 10(3):857-862. [38] Vandael D H, Mahapatra S, Calorio C, et al. Cav1.3 and Cav1.2 channels of adrenal chromaffin cells:emerging views on cAMP/cGMP-mediated phosphorylation and role in pacemaking[J]. Biochim Biophys Acta, 2013, 1828(7):1608-1618. [39] Chen T S, Battsengel S, Kuo C H, et al. Stem cells rescue cardiomyopathy induced by P. gingivalis-LPS via miR-181b[J]. J Cell Physiol, 2018, 233(8):5869-5876. [40] Mohseni Z, Spaanderman M E A, Oben J, et al. Cardiac remodeling and pre-eclampsia:an overview of microRNA expression patterns[J]. Ultrasound Obstet Gynecol, 2018, 52(3):310-317. |