首都医科大学学报 ›› 2019, Vol. 40 ›› Issue (6): 972-981.doi: 10.3969/j.issn.1006-7795.2019.06.029
王田田1, 高琛琛1, 李利生2, 徐敬东1
收稿日期:
2019-09-23
出版日期:
2019-11-21
发布日期:
2019-12-18
通讯作者:
徐敬东
E-mail:xu_jdd@ccmu.edu.cn
基金资助:
Wang Tiantian1, Gao Chenchen1, Li Lisheng2, Xu Jingdong1
Received:
2019-09-23
Online:
2019-11-21
Published:
2019-12-18
Supported by:
摘要: 巨噬细胞(macrophages,Mφ)是由血液中的单核细胞(monocytes,Mo)分化而来,依据肠道环境的变化可分化为M1Mφ、M2Mφ和调节性Mφ(regulatory macrophages,Mregs),能够识别并杀死病原体,参与固有免疫与获得性免疫,常存在于免疫防御的部位。在正常情况下,Mφ具有保护肠免受炎性反应损害的重要作用,可产生多种抗炎细胞因子。除此之外,Mφ在维持肠内稳态方面起着至关重要的作用,当Mφ功能紊乱时多伴有肠道疾病的发生,如炎性肠病和胃肠肿瘤的发病。总之,Mφ对维持肠道健康的作用不容小视。
中图分类号:
王田田, 高琛琛, 李利生, 徐敬东. 消化道巨噬细胞的功能与炎性肠病和肠道肿瘤的相关性研究进展[J]. 首都医科大学学报, 2019, 40(6): 972-981.
Wang Tiantian, Gao Chenchen, Li Lisheng, Xu Jingdong. Research progress on the correlation between the function of gut macrophages and inflammatory bowel disease and intestinal tumors[J]. Journal of Capital Medical University, 2019, 40(6): 972-981.
[1] Na Y R, Stakenborg M, Seok S H, et al. Macrophages in intestinal inflammation and resolution:a potential therapeutic target in IBD[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(9):531-543. [2] Zhao G, Liu L, Peek R J, et al. Activation of epidermal growth factor receptor in macrophages mediates feedback inhibition of M2 polarization and gastrointestinal tumor cell growth[J]. J Biol Chem, 2016, 291(39):20462-20472. [3] Sartor R B. Microbial influences in inflammatory bowel diseases[J]. Gastroenterology, 2008, 134(2):577-594. [4] Johnson K J, Ward P A, Striker G, et al. A study of the origin of pulmonary macrophages using the Chediak-Higashi marker[J]. Am J Pathol,1980,101(2):365-374. [5] Gordon S, Taylor P R. Monocyte and macrophage heterogeneity[J].Nat Rev Immunol, 2005, 5(12):953-964. [6] Geissmann F, Jung S, Littman D R. Blood monocytes consist of two principal subsets with distinct migratory properties[J]. Immunity, 2003, 19(1):71-82. [7] Strauss-Ayali D, Conrad S M, Mosser D M. Monocyte subpopulations and their differentiation patterns during infection[J].J Leukoc Biol, 2007, 82(2):244-252. [8] Mowat A M, Bain C C. Mucosal macrophages in intestinal homeostasis and inflammation[J].J Innate Immun, 2011, 3(6):550-564. [9] Gren S T, Grip O. Role of monocytes and intestinal macrophages in crohn's disease and ulcerative colitis[J]. Inflamm Bowel Dis, 2016, 22(8):1992-1998. [10] Shouval D S, Biswas A, Goettel J A, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function[J]. Immunity, 2014, 40(5):706-719. [11] Bain C C, Mowat A M. Intestinal macrophages-specialised adaptation to a unique environment[J].Eur J Immunol, 2011, 41(9):2494-2498. [12] Passlick B, Flieger D, Ziegler-Heitbrock H W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood[J]. Blood, 1989, 74(7):2527-2534. [13] Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior[J]. Science, 2007, 317(5838):666-670. [14] Hobbs S, Reynoso M, Geddis A V, et al. LPS-stimulated NF-kappaB p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages[J]. Physiol Rep, 2018, 6(21):e13914. [15] Hirotani T, Lee P Y, Kuwata H, et al. The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria[J]. J Immunol, 2005, 174(6):3650-3657. [16] Weinhage T, Dabritz J, Brockhausen A, et al. Granulocyte macrophage colony-stimulating factor-activated CD39+/CD73+ murine monocytes modulate intestinal inflammation via induction of regulatory T cells[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(4):433-449. [17] Kamada N, Hisamatsu T, Okamoto S, et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of crohn disease via IL-23/IFN-gamma axis[J]. J Clin Invest, 2008, 118(6):2269-2280. [18] Simon J M, Davis J P, Lee S E, et al. Alterations to chromatin in intestinal macrophages link IL-10 deficiency to inappropriate inflammatory responses[J]. Eur J Immunol,2016,46(8):1912-1925. [19] Mosser D M, Edwards J P. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12):958-969. [20] Niess J H, Adler G. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions[J]. J Immunol, 2010, 184(4):2026-2037. [21] Spoettl T, Hausmann M, Menzel K, et al. Role of soluble factors and three-dimensional culture in in vitro differentiation of intestinal macrophages[J]. World J Gastroenterol, 2007, 13(7):1032-1041. [22] Teng O, Ang C, Guan X L. Macrophage-bacteria interactions-a lipid-centric relationship[J]. Front Immunol, 2017, 8:1836-1853. [23] Lee S H, Starkey P M, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80[J]. J Exp Med, 1985,161(3):475-489. [24] Wehner S, Engel D R. Resident macrophages in the healthy and inflamed intestinal muscularis externa[J]. Pflugers Arch, 2017, 469(3-4):541-552. [25] Ghosh S, Khatua S, Acharya K. Crude polysaccharide from a wild mushroom enhances immune response in murine macrophage cells by TLR/NF-kappaB pathway[J].J Pharm Pharmacol, 2019, 71(8):1311-1323. [26] Kang G D, Kim D H. Poncirin and its metabolite ponciretin attenuate colitis in mice by inhibiting LPS binding on TLR4 of macrophages and correcting Th17/Treg imbalance[J]. J Ethnopharmacol, 2016, 189:175-185. [27] Regan T, Nally K, Carmody R, et al. Identification of TLR10 as a key mediator of the inflammatory response to Listeria monocytogenes in intestinal epithelial cells and macrophages[J]. J Immunol, 2013, 191(12):6084-6092. [28] Chavez-Galan L, Olleros M L, Vesin D, et al. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages[J]. Front Immunol, 2015, 6:263-278. [29] Arnold C E, Whyte C S, Gordon P, et al. A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo[J].Immunology, 2014, 141(1):96-110. [30] Shen K, Zheng S S, Park O, et al. Activation of innate immunity (NK/IFN-gamma) in rat allogeneic liver transplantation:contribution to liver injury and suppression of hepatocyte proliferation[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(4):G1070-G1077. [31] Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J]. Science, 2003, 301(5633):640-643. [32] Haribhai D, Ziegelbauer J, Jia S, et al. Alternatively activated macrophages boost induced regulatory T and Th17 cell responses during immunotherapy for colitis[J]. J Immunol, 2016, 196(8):3305-3317. [33] Kolls J K, Linden A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4):467-476. [34] Edwards J P, Zhang X, Frauwirth K A, et al. Biochemical and functional characterization of three activated macrophage populations[J]. J Leukoc Biol,2006,80(6):1298-1307. [35] Zhou X, Li W, Wang S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27(4):1176-1189. [36] Little A C, Pathanjeli P, Wu Z, et al. IL-4/IL-13 stimulated macrophages enhance breast cancer invasion via rho-GTPase regulation of synergistic VEGF/CCL-18 signaling[J]. Front Oncol, 2019, 9:456-469. [37] Gordon S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3(1):23-35. [38] Jaguin M, Houlbert N, Fardel O, et al. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin[J]. Cell Immunol, 2013, 281(1):51-61. [39] Barros M H, Hauck F, Dreyer J H, et al. Macrophage polarisation:an immunohistochemical approach for identifying M1 and M2 macrophages[J].PLoS One, 2013, 8(11):e80908. [40] Jeong D, Kim H Y, Chung D H. Sodium chloride inhibits IFN-gamma, but not IL-4, production by invariant NKT cells[J].J Leukoc Biol, 2018, 103(1):99-106. [41] Dhakal M, Hardaway J C, Guloglu F B, et al. IL-13Ralpha1 is a surface marker for M2 macrophages influencing their differentiation and function[J].Eur J Immunol, 2014, 44(3):842-855. [42] Hyvarinen K, Holopainen M, Skirdenko V, et al. Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22[J].Front Immunol, 2018, 9:771-784. [43] Hutchinson J A, Riquelme P, Bach C, et al. Donor-specific Anti-HLA antibodies present in pooled human serum do not prevent development of human Mreg_UKR from monocytes in culture[J].Transplantation, 2017, 101(5):e188-e190. [44] Gerber J S, Mosser D M. Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors[J]. J Immunol, 2001, 166(11):6861-6868. [45] Manjili M H, Wang X Y, Abrams S. Evolution of our understanding of myeloid regulatory cells:from MDSCs to mregs[J].Front Immunol, 2014, 5:303-306. [46] Mosser D M. The many faces of macrophage activation[J].J Leukoc Biol, 2003, 73(2):209-212. [47] Lo S C, Reverberi D, Balbi C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects:endorsement of macrophage polarization[J].Stem Cells Transl Med, 2017, 6(3):1018-1028. [48] Ylostalo J H, Bartosh T J, Coble K, et al. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype[J].Stem Cells, 2012, 30(10):2283-2296. [49] Fleming B D, Chandrasekaran P, Dillon L A, et al. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling[J].J Leukoc Biol, 2015, 98(3):395-407. [50] Xiao X, Gaffar I, Guo P, et al. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7[J]. Proc Natl Acad Sci U S A, 2014, 111(13):E1211-E1220. [51] Meshkibaf S, Martins A J, Henry G T, et al. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages[J].Cytokine, 2016, 78:69-78. [52] Khalil M, Babes A, Lakra R, et al. Transient receptor potential melastatin 8 ion channel in macrophages modulates colitisthrough a balance-shift in TNF-alpha and interleukin-10 production[J].Mucosal Immunol, 2016, 9(6):1500-1513. [53] Agin M, Yucel A, Gumus M, et al. The effect of enteral nutrition support rich in tgf-beta in the treatment of inflammatory bowel disease in childhood[J]. Medicina (Kaunas),2019, 55(10):pii:E620. [54] Shi Y, Li T, Zhou J, et al. Herbs-partitioned moxibustion combined with acupuncture inhibits TGF-beta1-Smad-snail-induced intestinal epithelial mesenchymal transition in Crohn's disease model rats[J]. Evid Based Complement Alternat Med,2019, 2019:8320250. [55] Cosin-Roger J, Ortiz-Masia D, Calatayud S, et al. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD[J].Mucosal Immunol, 2016, 9(4):986-998. [56] Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages[J].Int J Mol Med, 2018, 42(5):2903-2913. [57] Lin Y, Yang X, Yue W, et al. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization[J].Cell Mol Immunol, 2014, 11(4):355-366. [58] Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis[J].Science, 2014, 343(6178):1249288. [59] Dubertret L, Breton-Gorius J, Fosse M, et al. A cytochemical marker for epidermal differentiation, Langerhans cells, skin resident macrophages and mitochondria[J].Br J Dermatol, 1982, 107 Suppl 23:96-100. [60] Yeo E J, Cassetta L, Qian B Z, et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer[J].Cancer Res, 2014, 74(11):2962-2973. [61] Davis M J, Tsang T M, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection[J].MBio, 2013, 4(3):e213-e264. [62] Hu W, Li X, Zhang C, et al. Tumor-associated macrophages in cancers[J].Clin Transl Oncol, 2016, 18(3):251-258. [63] Dupasquier S, Blache P, Picque L L, et al. Modulating PKCalpha activity to target wnt/beta-catenin signaling in colon cancer[J].Cancers (Basel), 2019, 11(5):693-712. [64] Liu Y, Cao X. The origin and function of tumor-associated macrophages[J].Cell Mol Immunol, 2015, 12(1):1-4. [65] Che F, Heng X, Zhang H, et al. Novel B7-H4-mediated crosstalk between human non-Hodgkin lymphoma cells and tumor-associated macrophages leads to immune evasion via secretion of IL-6 and IL-10[J].Cancer Immunol Immunother, 2017, 66(6):717-729. [66] Goswami K K, Sarkar M, Ghosh S, et al. Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core:Critical role of IL-10/STAT3 signaling[J].Mol Immunol, 2016, 80:1-10. [67] Salmaninejad A, Valilou S F, Soltani A, et al. Tumor-associated macrophages:role in cancer development and therapeutic implications[J].Cell Oncol (Dordr), 2019,42(5):591-608. [68] Kratochvill F, Neale G, Haverkamp J M, et al. TNF counterbalances the emergence of M2 tumor macrophages[J].Cell Rep, 2015, 12(11):1902-1914. [69] Chen Y, Zhang S, Wang Q, et al. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein[J].J Hematol Oncol, 2017, 10(1):36-49. [70] Balkwill F R, Mantovani A. Cancer-related inflammation:common themes and therapeutic opportunities[J]. Semin Cancer Biol, 2012, 22(1):33-40. |
[1] | 王茜, 张家坤, 刘青, 孙琳, 李晶洁. M2巨噬细胞对新生乳鼠受损心脏组织的再生和修复机制[J]. 首都医科大学学报, 2022, 43(2): 178-186. |
[2] | 张兴华, 邢洁, 孙灿, 张希, 王拥军. 溃疡性结肠炎中B细胞对巨噬细胞趋化作用的初步研究[J]. 首都医科大学学报, 2022, 43(1): 42-46. |
[3] | 武永乐, 尚宏伟, 孙广永, 张栋, 丁惠国. 小鼠脂肪组织中免疫细胞分离方法的优化及亚群在肥胖小鼠中的作用[J]. 首都医科大学学报, 2021, 42(4): 559-567. |
[4] | 张文丽, 孔凡虹, 何露, 董成亚, 王雅杰. STR分型技术鉴定后两株U87胶质瘤细胞系生物学特性评价[J]. 首都医科大学学报, 2018, 39(1): 74-78. |
[5] | 张媛媛, 李伟阳, 杨琳, 李丽英. 磷酸鞘胺醇调节小鼠单核巨噬细胞炎性细胞因子表达的机制研究[J]. 首都医科大学学报, 2015, 36(5): 729-733. |
[6] | 杨琳, 田蕾, 谢杰施, 李丽英. 一种简单的分离、培养及鉴定小鼠外周血单核巨噬细胞方法的建立[J]. 首都医科大学学报, 2015, 36(4): 610-613. |
[7] | 李玉琳, 吴依娜, 张聪聪, 阚晓玉, 阿希, 赵伟, 王绿娅, 杜杰. 小鼠骨髓巨噬细胞过继性回输的体内示踪及其在高血压心脏损伤中的应用研究[J]. 首都医科大学学报, 2013, 34(3): 391-397. |
[8] | 蔡永明;张春云;申文晋;李铭;姜凌;张宗鹏;. 重组人粒细胞巨噬细胞刺激因子栓在大鼠和Beagle犬中的免疫原性[J]. 首都医科大学学报, 2012, 33(3): 345-349. |
[9] | 穆珺;庄晓明;刘锐敏;曾静波. 血清巨噬细胞移动抑制因子、肿瘤坏死因子-α与糖尿病肾病的相关性研究[J]. 首都医科大学学报, 2012, 33(3): 385-388. |
[10] | 高君;王宇;张忠涛;李建设;马雪梅;赵丽珍. 肝肺综合征大鼠模型肺血管内巨噬细胞iNOS和HO-1的表达[J]. 首都医科大学学报, 2009, 30(2): 222-226. |
[11] | 何焱玲;齐焕英;徐俊珠;董洁. 体外诱导培养人树突状细胞的生物学特性及其神经免疫调节功能分析[J]. 首都医科大学学报, 2006, 27(6): 712-715. |
[12] | 张海萍;连石;朱威. 梅毒患者外周血单核细胞体外诱导树突状细胞的形态学与功能研究[J]. 首都医科大学学报, 2006, 27(6): 727-729. |
[13] | 童朝辉;陈宝敏;王辰;Guzman Josune;Costabel Ulrich. IL-12、IL-18和TNF-α在外源性过敏性肺泡炎发病中的作用[J]. 首都医科大学学报, 2006, 27(1): 32-34. |
[14] | 徐婷婷;Hinda J. Ahmed;Kristina Eriksson;Karin Ahlman;杨永弘;Teresa Lagergard. 杜克雷嗜血杆菌与人类树突状细胞和巨噬细胞体外的相互作用[J]. 首都医科大学学报, 2004, 25(2): 193-197. |
[15] | 沈海中;张力平;平国玲;张红春;靖学芳;李郁英;李玉兰;李卫红;张海燕. 链球菌组蛋白样蛋白对小鼠腹腔巨噬细胞产生IL-6的影响[J]. 首都医科大学学报, 2003, 24(1): 11-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||