[1] Tate M, Grieve D J, Ritchie R H, et al. Are targeted therapies for diabetic cardiomyopathy on the horizon?[J]. Clin Sci, 2017, 131(10):897-915. [2] De Jong A M, Maass A H, Oberdorf-Maass S U, et al. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation[J]. Cardiovasc Res, 2011, 89(4):754-765. [3] Petersen C E,Wolf M J,Smyth J T. Drosophila suppression of store-operated calcium entry causes dilated cardiomyopathy of the heart[J].Biol Open, 2020,9(3):bio049999. [4] Bénard L, Oh J G, Cacheux M, et al. Cardiac STIM1 silencing impairs adaptive hypertrophy and promotes heart failure through inactivation of mTORC2/Akt signaling[J]. Circulation, 2016, 133(15):1458-1471. [5] Shaw R M, Colecraft H M. L-type calcium channel targeting and local signaling in cardiac myocytes[J]. Cardiovasc Res, 2013, 98(2):177-186. [6] Elaib Z, Saller F, Bobe R. The calcium entry-calcium refilling coupling[J]. Adv Exp Med Biol, 2016, 898:333-352. [7] Shen W W, Frieden M, Demaurex N, et al. Local cytosolic Ca2+ elevations are required for stromal interaction molecule 1(STIM1) de-oligomerization and termination of store-operated Ca2+ entry[J]. J Biol Chem, 2011, 286(42):36448-36459. [8] Amcheslavsky A, Wood M L, Yeormin A V, et al. Molecular biophysics of Orai store-operated Ca2+ channels[J]. Biophys J, 2015, 108(2):237-246. [9] Stathopulos P B, Schindl R, Fahrner M, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry[J]. Nat Commun, 2013, 4:2963. [10] Zhou Y, Srinivasan P, Razavi S, et al. Initial activation of STIM1, the regulator of store-operated calcium entry[J]. Nat Struct Mol Biol, 2013, 20(8):973-981. [11] Deler I, Plenk P, Fahrner M, et al. The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1[J]. J Biol Chem, 2013, 288(40):29025-29034. [12] Thompson J L, Shuttleworth T J. A plasma membrane-targeted cytosolic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel[J]. Channels (Austin), 2012, 6(5):370-378. [13] Ohba T, Watanabe H, Murakami M, et al. Essential role of STIM1 in the development of cardiomyocyte hypertrophy[J]. Biochem Biophys Res Commun, 2009, 389(1):172-176. [14] Stathopulos P B, Zheng L, Li G Y, et al. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry[J]. Cell, 2008, 135(1):110-122. [15] Hirve N, Rajanikanth V, Hogan P G, et al. Coiled-coil formation conveys a STIM1 signal from ER lumen to cytoplasm[J]. Cell Rep, 2018, 22(1):72-83. [16] Yang X, Jin H, Cai X, et al. Structural and mechanistic insights into the activation of stromal interaction molecule 1(STIM1)[J]. Proc Natl Acad Sci U S A, 2012, 109(15):5657-5662. [17] López E, Salido G M, Rosado J A, et al. Unraveling STIM2 function[J]. J Physiol Biochem, 2012, 68(4):619-633. [18] Bonhenry D, Schober R, Schmidt T, et al. Mechanistic insights into the Orai channel by molecular dynamics simulations[J]. Semin Cell Dev Biol, 2019, 94:50-58. [19] Madl J, Weghuber J, Fritsch R, et al. Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells[J]. J Biol Chem, 2010, 285(52):41135-41142. [20] Hou X, Pedil, Diver M M, et al. Crystal structure of the calcium release-activated calcium channel Orai[J]. Science, 2012, 338(6112):1308-1313. [21] Perni S, Dynes J L, Yeromin A V, et al. Nanoscale patterning of STIM1 and Orai1 during store-operated Ca2+ entry[J]. Proc Natl Acad Sci U S A, 2015, 112(40):5533-5542. [22] Palty R, Isacoff E Y, et al. Cooperative binding of stromal interaction molecule 1(STIM1) to the N and C Termini of calcium release-activated calcium modulator 1(Orai1)[J]. J Biol Chem, 2016, 291(1):334-341. [23] Tirado-Lee L, Yamashita M, Prakriya M. Conformational changes in the Orai1 C-terminus evoked by STIM1 binding[J]. Plos One, 2015, 10(6):e0128622. [24] Maléth J, Choi S, Muallem S, et al. Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating[J]. Nat Commun, 2014, 5:5843. [25] Li X, Wu G, Yang Y, et al. Calmodulin dissociates the STIM1-Orai1 complex and STIM1 oligomers[J]. Nat Commun, 2017, 8(1):1042. [26] Wu M M, Covington E D, Lewis R S, et al. Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum-plasma membrane junctions[J]. Mol Biol Cell, 2014, 25(22):3672-3685. [27] Luo X, Hojayev B, Jiang N, et al. STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy[J]. J Mol Cell Cardiol, 2012, 52(1):136-147. [28] Eder P. Cardiac remodeling and disease:SOCE and TRPC Signaling in cardiac pathology[J]. Adv Exp Med Biol, 2017, 993:505-521. [29] Golovina V A. Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum[J]. J Physiol, 2005, 564:737-749. [30] Zhang B, Jiang J, Yue Z, et al. Store-operated Ca2+ entry (SOCE) contributes to angiotensin II-induced cardiac fibrosis in cardiac fibroblasts[J]. J Pharmacol Sci, 2016, 132(3):171-180. [31] Hunton D L, Lucchesi P A, Pang Y, et al. Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes[J]. J Biol Chem, 2002, 277(16):14266-14273.. [32] Voelkers M, Salz M, Herzog N, et al. Orai1 and STIM1 regulate normal and hypertrophic growth in cardiomyocytes[J]. J Molecular Cell Cardiol, 2010, 48(6):1329-1334. [33] Ohba T, Watanabe H, Murakami M, et al. Essential role of STIM1 in the development of cardiomyocyte hypertrophy[J]. Biochem Biophys Res Commun, 2009, 389(1):172-176. [34] Kumar S, Kain V, Sitasawad S L, et al. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways[J]. Biochim Biophys Acta, 2012, 1820(7):907-920. [35] He F, Wu Q, Xu B, et al. Suppression of STIM1 reduced intracellular calcium concentration and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cells[J]. Biosci Rep, 2017, 37(6):BSR20171249. [36] Pang Y, Hunton D L, Bounelis P, et al. Hyperglycemia inhibits capacitative calcium entry and hypertrophy in neonatal cardiomyocytes[J]. Diabetes, 2002, 51(12):3461-3467. [37] Correll R N, Goonasekera S A, Van Berlo J H, et al. STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy[J]. J Mol Cell Cardiol, 2015, 87:38-47. [38] Bartoli F, Bailey M A, Rode B, et al. Orai1 channel inhibition preserves left ventricular systolic function and normal ca handling after pressure overload[J]. Circulation, 2020, 141(3):199-216. [39] Sorrentino A, Borghetti G, Zhou Y, et al. Hyperglycemia induces defective Ca2+ homeostasis in cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2017, 312(1):150-161. [40] Cesario D A, Brar R, Shivkumar K. Alterations in ion channel physiology in diabetic cardiomyopathy[J]. Endocrinol Metab Clin North Am,2006,35(3):601-610. [41] Zhou H, Yue Y, Wang J, et al. Melatonin therapy for diabetic cardiomyopathy:A mechanism involving Syk-mitochondrial complex I-SERCA pathway[J]. Cell Signal, 2018, 47:88-100. [42] Gui L, Zhu J, Lu X, et al. S-Nitrosylation of STIM1 by neuronal nitric oxide synthase inhibits store-operated Ca2+ entry[J]. J Mol Biol, 2018, 430(12):1773-1785. [43] Zhu-Mauldin X, Marsh S A, Zou L, et al. Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes[J]. J Biol Chem, 2012, 287(46):39094-39106. |