[1] 丁大连, 李明, 姜泗长, 等. 内耳形态学[M]. 哈尔滨: 黑龙江科学技术出版社, 2001: 43. [2] 王伯, 李玉松, 黄高昇, 等. 病理学技术[M]. 北京: 人民卫生出版社, 2000: 937. [3] Shi S R, Cote R J, Taylor C R. Antigen retrieval immunohistochemistry and molecular morphology in the year 2001[J]. Appl Immunohistochem Mol Morphol, 2001, 9(2): 107-116. [4] Yamashita S, Okada Y. Application of heat-induced antigen retrieval to aldehyde-fixed fresh frozen sections[J]. J Histochem Cytochem, 2005, 53(11): 1421-1432. [5] Hasui K, Wang J, Tanaka Y, et al. Development of ultra-super sensitive immunohistochemistry and its application to the etiological study of adult T-cell leukemia/lymphoma[J]. Acta Histochem Cytochem, 2012, 45(2): 83-106. [6] Duong T, Lopez I A, Ishiyama A, et al. Immunocytochemical distribution of WARP (von Willebrand A domain-related protein) in the inner ear[J]. Brain Res, 2011, 1367: 50-61. [7] Tornabene S V, Sato K, Pham L, et al. Immune cell recruitment following acoustic trauma[J]. Hear Res, 2006, 222(1/2): 115-124. [8] Okano T, Nakagawa T, Kita T, et al. Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea[J]. J Neurosci Res, 2008, 86(8): 1758-1767. [9] Shi X R. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells[J]. Cell Tissue Res, 2010, 342(1): 21-30. [10] Shi X R. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review)[J]. Hear Res, 2016, 338: 52-63. [11] Tan W J T, Thorne P R, Vlajkovic S M. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure[J]. Histochem Cell Biol, 2016, 146(2): 219-230. [12] O'Malley J T, Nadol J B Jr, McKenna M J. Anti CD163+, Iba1+, and CD68+ cells in the adult human inner ear: normal distribution of an unappreciated class of macrophages/microglia and implications for inflammatory otopathology in humans[J]. Otol Neurotol, 2016, 37(1): 99-108. [13] Hu B H, Zhang C L, Frye M D. Immune cells and non-immune cells with immune function in mammalian cochleae[J]. Hear Res, 2018, 362: 14-24. [14] Liu W, Molnar M, Garnham C, et al. Macrophages in the human cochlea: saviors or predators-a study using super-resolution immunohistochemistry[J]. Front Immunol, 2018, 9: 223. [15] Liu W, Rask-Andersen H. Super-resolution immunohistochemistry study on CD4 and CD8 cells and the relation to macrophages in human cochlea[J]. J Otol, 2019, 14(1): 1-5. [16] Dong Y Z, Yang L B, Yang L, et al. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury[J]. Neural Regen Res, 2014, 9(16): 1520-1524. [17] Gransee H M, Zhan W Z, Sieck G C, et al. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury[J]. J Neurotrauma, 2015, 32(3): 185-193. [18] Okuda A, Horii-Hayashi N, Sasagawa T, et al. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats[J]. J Neurosurg Spine, 2017, 26(3): 388-395. |