[1] Weiss S R, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus[J]. Microbiol Mol Biol Rev, 2005, 69(4): 635-664.
[2] Peck K M, Burch C L, Heise M T, et al. Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives[J]. Annu Rev Virol, 2015, 2(1): 95-117.
[3] Rota P A, Oberste M S, Monroe S S, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome[J]. Science, 2003, 300(5624): 1394-1399.
[4] Ksiazek T G, Erdman D, Goldsmith C S, et al. A novel coronavirus associated with severe acute respiratory syndrome[J]. N Engl J Med, 2003, 348(20): 1953-1966.
[5] Van Boheemen S, De Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans[J]. mBio, 2012, 3(6): e00473-12.
[6] Zaki A M, Van Boheemen S, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia[J]. N Engl J Med, 2012, 367(19): 1814-1820.
[7] Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798): 265-269.
[8] Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273.
[9] World Health Organization.WHO Coronavirus (COVID-19) Dashboard[EB/OL]. (2023-01-01)[2023-01-01].https://covid19.who.int.
[10] Korber B, Fischer W M, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus[J]. Cell, 2020, 182(4): 812-827.e19.
[11] Li Q Q, Wu J J, Nie J H, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity[J]. Cell, 2020, 182(5): 1284-1294.e9.
[12] Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization[J]. Nature, 2021, 596(7871): 276-280.
[13] Zhang L, Li Q Q, Liang Z T, et al. The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron[J]. Emerg Microbes Infect, 2022, 11(1): 1-5.
[14] Sanders D W, Jumper C C, Ackerman P J, et al. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation[J]. Elife, 2021, 10: e65962.
[15] Rajah M M, Hubert M, Bishop E, et al. SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced spike-mediated syncytia formation[J]. EMBO J, 2021, 40(24): e108944.
[16] Shrestha L B, Foster C, Rawlinson W, et al. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission[J]. Rev Med Virol, 2022, 32(5): e2381.
[17] Rabbani M A, Ribaudo M, Guo J T, et al. Identification of interferon-stimulated gene proteins that inhibit human parainfluenza virus type 3[J]. J Virol, 2016, 90(24): 11145-11156.
[18] Zhao X S, Sehgal M, Hou Z F, et al. Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses[J]. J Virol, 2018, 92(6): e01535-17.
[19] Chen D Y, Hou Z F, Jiang D, et al. GILT restricts the cellular entry mediated by the envelope glycoproteins of SARS-CoV, Ebola virus and Lassa fever virus[J]. Emerg Microbes Infect, 2019, 8(1): 1511-1523.
[20] Shu Q, Lennemann N J, Sarkar S N, et al. ADAP2 is an interferon stimulated gene that restricts RNA virus entry[J]. PLoS Pathog, 2015, 11(9): e1005150.
[21] Liu S Y, Aliyari R, Chikere K, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol[J]. Immunity, 2013, 38(1): 92-105.
[22] Zhao X S, Zheng S L, Chen D Y, et al. LY6E restricts entry of human coronaviruses, including currently pandemic SARS-CoV-2[J]. J Virol, 2020, 94(18): e00562-20.
[23] Yu J Y, Liu S L. Emerging role of LY6E in virus-host interactions[J]. Viruses, 2019, 11(11): 1020.
[24] Classon B J, Coverdale L. Mouse stem cell antigen Sca-2 is a member of the Ly-6 family of cell surface proteins[J]. Proc Natl Acad Sci U S A, 1994, 91(12): 5296-5300.
[25] Mao M, Yu M, Tong J H, et al. RIG-E, a human homolog of the murine Ly-6 family, is induced by retinoic acid during the differentiation of acute promyelocytic leukemia cell[J]. Proc Natl Acad Sci U S A, 1996, 93(12): 5910-5914.
[26] Schoggins J W, Wilson S J, Panis M, et al. A diverse range of gene products are effectors of the type Ⅰ interferon antiviral response[J]. Nature, 2011, 472(7344): 481-485.
[27] Brown D A, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts[J]. J Biol Chem, 2000, 275(23): 17221-17224.
[28] Chazal N, Gerlier D. Virus entry, assembly, budding, and membrane rafts[J]. Microbiol Mol Biol Rev, 2003, 67(2): 226-237.
[29] Lin T Y, Chin C R, Everitt A R, et al. Amphotericin B increases influenza A virus infection by preventing IFITM3-mediated restriction[J]. Cell Rep, 2013, 5(4): 895-908.
[30] Zhao X S, Guo F, Liu F, et al. Interferon induction of IFITM proteins promotes infection by human coronavirus OC43[J]. Proc Natl Acad Sci U S A, 2014, 111(18): 6756-6761.
[31] Nie J H, Li Q Q, Wu J J, et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay[J]. Nat Protoc, 2020, 15(11): 3699-3715.
[32] Dixon A S, Schwinn M K, Hall M P, et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells[J]. ACS Chem Biol, 2016, 11(2): 400-408.
[33] Wang H L, Guo S R, Yang H. Rapid quantitative monitoring of SARS-CoV-2 spike protein-mediated syncytia formation using split NanoLuc[J]. J Med Virol, 2022, 94(12): 6073-6077.
[34] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e8.
[35] Graham C, Seow J, Huettner I, et al. Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant[J]. Immunity, 2021, 54(6): 1276-1289.e6.
[36] Arora P, Sidarovich A, Krüger N, et al. B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination[J]. Cell Rep, 2021, 37(2): 109825.
[37] Hoffmann M, Zhang L, Pöhlmann S. Omicron: master of immune evasion maintains robust ACE2 binding[J]. Signal Transduct Target Ther, 2022, 7(1): 118.
[38] Mannar D, Saville J W, Zhu X, et al. SARS-CoV-2 omicron variant: antibody evasion and cryo-EM structure of spike protein-ACE2 complex[J]. Science, 2022, 375(6582): 760-764.
[39] Cui Z, Liu P, Wang N, et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron[J]. Cell, 2022, 185(5): 860-871.e13.
[40] Sheikh A, Kerr S, Woolhouse M, et al. Severity of omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE Ⅱ): a national cohort study with nested test-negative design[J]. Lancet Infect Dis, 2022, 22(7): 959-966.
|