[1]The Nobel Prize. Press release[EB/OL]. (2023-10-04)[2023-10-08]. https://www.nobelprize.org/prizes/chemistry/2023/press-release/.
[2]Cherniukh I, Rainò G, Stferle T, et al. Perovskite-type superlattices from Lead halide perovskite nanocubes[J]. Nature, 2021, 593(7860): 535-542.
[3]Septianto R D, Miranti R, Kikitsu T, et al. Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots[J]. Nat Commun, 2023, 14(1): 2670.
[4]Shu Y F, Lin X, Qin H Y, et al. Quantum dots for display applications[J]. Angew Chem Int Ed Engl, 2020, 59(50): 22312-22323.
[5]Huffaker D L, Park G, Zou Z, et al. 1.3 μm room-temperature GaAs-based quantum-dot laser[J]. Appl Phys Lett, 1998, 73(18): 2564-2566.
[6]Wang Y W, Varadi L, Trinchi A, et al. Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging[J]. Small, 2018, 14(51): e1803156.
[7]Ekimov A I, Efros A L, Onushchenko A A. Quantum size effect in semiconductor microcrystals[J]. Solid State Commun, 1993, 88(11/12): 947-950.
[8]Rossetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution[J]. J Chem Phys, 1983, 79(2): 1086-1088.
[9]Reed M A, Bate R T, Bradshaw K, et al. Spatial quantization in GaAs-AlGaAs multiple quantum dots[J]. J Vac Sci Technol B Nanotechnol Microelectron, 1986, 4(1): 358-360.
[10]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J Am Chem Soc, 1993, 115(19): 8706-8715.
[11]MIT Department of Chemistry. Moungi Bawendi[EB/OL]. [2023-10-05]. https://chemistry.mit.edu/profile/moungi-bawendi/.
[12]Norris D J, Bawendi M G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots[J]. Phys Rev B Condens Matter, 1996, 53(24): 16338-16346.
[13]Klimov V I, Mikhailovsky A A, Xu S, et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000, 290(5490): 314-317.
[14]Choi H S, Liu W H, Misra P, et al. Renal clearance of quantum dots[J]. Nat Biotechnol, 2007, 25(10): 1165-1170.
[15]Columbia University Department of Chemistry. Louis E. Brus[EB/OL]. [2023-10-05]. https://www.chem.columbia.edu/content/louis-e-brus.
[16]Brus L E. Structure and electronic states of quantum semiconductor crystallites[J]. Nanostruct Mate, 1992, 1(1): 71-75.
[17]The Kavli Prize. The future will be greater than we can ever imagine as told by Louis E. Brus[EB/OL]. [2023-10-05]. https://www.kavliprize.org/louis-brus-autobiography.
[18]Zhao S Y F, Elbaz G A, Bediako D K, et al. Controlled electrochemical intercalation of graphene/h-BN van der waals heterostructures[J]. Nano Lett, 2018, 18(1): 460-466.
[19]Raja A, Brus L E. Non-local dielectric effects in nanoscience[J]. J Chem Phys, 2023, 159(2): 020901.
[20]Guo Y S, Yaffe O, Hull T D, et al. Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites[J]. Nat Commun, 2019, 10(1): 1175.
[21]nexdot. Quantum dots history[EB/OL]. [2023-10-05]. https://nexdot.fr/en/history-of-quantum-dots/.
[22]Andreev V M, Ekimov A I, Garbusov D Z, et al. The spectral dependence of the radiative recombination kinetics in compensated GaAs[J]. Physica Status Solidi A, 1972, 10(1): 325-330.
[23]Chen Z N, Li H T, Yuan C X, et al. Color revolution: prospects and challenges of quantum-dot light-emitting diode display technologies[J/OL]. Small Methods, 2023: e2300359[2023-10-05]. https://doi.org/10.1002/smtd.202300359.
[24]Jang E, Jang H. Review: quantum dot light-emitting diodes[J]. Chem Rev, 2023, 123(8): 4663-4692.
[25]Phafat B, Bhattacharya S. Quantum dots as theranostic agents: recent advancements, surface modifications, and future applications[J]. Mini Rev Med Chem, 2023, 23(12): 1257-1272.
[26]Zhang Y J, Liu B, Liu Z M, et al. Research progress in the synthesis and biological application of quantum dots[J]. New J Chem, 2022, 46(43): 20515-20539.
[27]Sutherland A J. Quantum dots as luminescent probes in biological systems[J]. Curr Opin Solid State Mater Sci, 2002, 6(4): 365-370.
[28]Lin Y S, Lin K S, Chen Y, et al. Synthesis, characterization, and application of gene conjugated polymerized nitrogen-doped graphene quantum dots carriers for in vivo bio-targeting in neuroblastoma treatment[J]. J Taiwan Inst Chem Eng, 2022, 131: 104167.
[29]Xu Q, Gao J J, Wang S Y, et al. Quantum dots in cell imaging and their safety issues[J]. J Mater Chem B, 2021, 9(29): 5765-5779.
[30]Li Y X, Wang W Q, Gong H X, et al. Graphene-coated copper-doped ZnO quantum dots for sensitive photoelectrochemical bioanalysis of thrombin triggered by DNA nanoflowers[J]. J Mater Chem B, 2021, 9(34): 6818-6824.
[31]Wang Y, Chen J, Tian J K, et al. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma[J]. J Nanobiotechnology, 2022, 20(1): 78.
[32]Zhang X, Zhao Y B, Cao L Q, et al. Fabrication of degradable lemon-like porous silica nanospheres for pH/redox-responsive drug release[J]. Sens Actuators B Chem, 2018, 257: 105-115.
[33]Sun P, Xing Z P, Li Z Z, et al. Recent advances in quantum dots photocatalysts[J]. Chem Eng J, 2023, 458: 141399.
[34]Giordano M G, Seganti G, Bartoli M, et al. An overview on carbon quantum dots optical and chemical features[J]. Molecules, 2023, 28(6): 2772.
[35]Amani-Ghadim A R, Arefi-Oskoui S, Mahmoudi R, et al. Improving photocatalytic activity of the ZnS QDs via lanthanide doping and photosensitizing with GO and g-C3N4 for degradation of an azo dye and bisphenol-A under visible light irradiation[J]. Chemosphere, 2022, 295: 133917.
[36]Wu J, Chen S M, Seeds A, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells[J]. J Phys D Appl Phys, 2015, 48(36): 363001.
[37]Aftab S, Iqbal M Z, Hussain S, et al. Quantum junction solar cells: development and prospects[J]. Adv Funct Mater, 2023, 33(38): 2303449.
|