[1] Taskiran-Sag A, Yemisci M, Gursoy-Ozdemir Y, et al. Improving microcirculatory reperfusion reduces parenchymal oxygen radical formation and provides neuroprotection[J]. Stroke, 2018,49(5):1267-1275. [2] Zhao Y, Pan R, Li S, et al.Chelating intracellularly accumulated zinc decreased ischemic brain injury through reducing neuronal apoptotic death[J]. Stroke, 2014, 45(4):1139-1147. [3] Zhang Y, Zhou H, Wu W, et al. Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca2+-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways[J]. Free Radic Biol Med, 2016, 95:278-292. [4] Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117:76-89. [5] Carbone F, Teixeira P C, Braunersreuther V, et al. Pathophysiology and treatments of oxidative injury in ischemic stroke:focus on the phagocytic NADPH oxidase 2[J]. Antioxid Redox Signal, 2015, 23(5):460-489. [6] Brennan A M, Suh S W, Won S J, et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation[J]. Nat Neurosci, 2009, 12(7):857-863. [7] AshwaI S, Tone B, Tian H R, et al. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion[J]. Stroke, 1998, 29(5):1037-1047. [8] 闫峰, 赵咏梅, 罗玉敏, 等. 大鼠局灶性脑缺血再灌注脑组织中活性氧自由基表达的时程变化[J]. 首都医科大学学报, 2015, 36(5):694-698. [9] 尹洁, 闫峰, 罗玉敏, 等. R(+)-普拉克索对大鼠短暂性局灶性脑缺血损伤的神经保护作用[J]. 首都医科大学学报, 2014, 35(2):225-230. [10] Gasche Y, Copin J C, Sugawara T, et al. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2001, 21(12):1393-1400. [11] Kawahara M, Tanaka K I, Kato-Negishi M. Zinc, carnosine, and neurodegenerative diseases[J]. Nutrients, 2018, 10(2),Pii:E147. [12] 闫峰, 刘克建, 赵咏梅, 等. 中枢神经系统中锌离子释放的相关机制及其与脑缺血损伤的关系[J]. 神经疾病与精神卫生, 2014, 14(4):406-409. [13] Gazaryan I G, Krasinskaya I P, Kristal B S, et al. Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition[J]. J Biol Chem, 2007, 282(33):24373-24380. [14] Qi Z, Liang J, Pan R, et al. Zinc contributes to acute cerebral ischemia-induced blood-brain barrier disruption[J]. Neurobiol Dis, 2016, 95:12-21. [15] Wang G, Huang H, Zheng H, et al. Zn2+ and mPTP mediate endoplasmic reticulum stress inhibition-induced cardioprotection against myocardial ischemia/reperfusion injury[J]. Biol Trace Elem Res, 2016, 174(1):189-197. [16] 李森, 刘克建, 赵咏梅, 等. 锌离子在脑缺血中作用的研究进展[J]. 首都医科大学学报, 2013, 34(1):75-79. [17] Irving E A, Bamford M. Role of mitogen-and stress-activated kinases in ischemic injury[J]. J Cereb Blood Flow Metab, 2002, 22(6):631-647. [18] Aras M A, Hara H, Hartnett K A, et al. Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning[J]. J Neurochem, 2009, 110(1):106-117. [19] Dong W, Qi Z, Liang J, et al. Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model[J]. Exp Neurol, 2015, 272:181-189. [20] Ji S G, Weiss J H. Zn2+-induced disruption of neuronal mitochondrial function:synergism with Ca2+, critical dependence upon cytosolic Zn2+ buffering, and contributions to neuronal injury[J]. Exp Neurol, 2018, 302:181-195. [21] Aimo L, Cherr G N, Oteiza P I,et al. Low extracellular zinc increases neuronal oxidant production through NADPH oxidase and nitric oxide synthase activation[J]. Free Radic Biol Med, 2010, 48(12):1577-1587. [22] Wang H R, Li J S, Chen J, et al. Effects of zinc on activity of NOS and expression of nNOS in hippocampus of acute hypoxic mice[J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2006, 22(4):395-398. [23] Shuttleworth C W, Weiss J H. Zinc:new clues to diverse roles in brain ischemia[J]. Trends Pharmacol Sci, 2011, 32(8):480-486. [24] 曾晓莉, 张文娟,赵博,等.慢性脑缺血神经保护机制及药物研究进展[J].中国脑血管病杂志, 2017,14(11):607-611. [25] 刘云, 高晓莹,戚思华.缺血后处理脑保护作用的研究进展[J].中国脑血管病杂志, 2015,12(3):160-164. [26] Andrabi S A, Kim N S, Yu S W, et al. Poly(ADP-ribose) (PAR) polymer is a death signal[J]. Proc Natl Acad Sci U S A, 2006, 103(48):18308-18313. [27] Hwang J J, Lee S J, Kim T Y, et al. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons[J]. J Neurosci, 2008, 28(12):3114-3122. [28] Oteiza P I. Zinc and the modulation of redox homeostasis[J]. Free Radic Biol Med, 2012, 53(9):1748-1759. [29] Omata Y, Salvador G A, Supasai S, et al. Decreased zinc availability affects glutathione metabolism in neuronal cells and in the developing brain[J]. Toxicol Sci, 2013, 133(1):90-100. [30] Lee J Y, Kim J H, Palmiter R D, et al. Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury[J]. Exp Neurol, 2003, 184(1):337-347. [31] Suh S W, Hamby A M, Gum E T, et al. Sequential release of nitric oxide, zinc, and superoxide in hypoglycemic neuronal death[J]. J Cereb Blood Flow Metab, 2008, 28(10):1697-1706. |