[1] Lu B, Nagappan G, Guan X, et al. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases[J]. Nat Rev Neurosci, 2013,14(6):401-416. [2] Selkoe D J. Alzheimer's disease is a synaptic failure[J]. Science, 2002,298(5594):789-791. [3] Pascale N L, Maria C B, Lei C, et al. Synaptic targeting by Alzheimer's-related amyloid oligomers[J]. J Neurosci, 2004,24(45):10191-10200. [4] De Felice F G, Decker H, Klein W L, et al. Protection of synapses against Alzheimer's-linked toxins:insulin signaling prevents the pathogenic binding of Aβ oligomers[J]. Proc Natl Acad Sci,2009,106(6):1971-1976. [5] Mielke M L, Spires-Jones T L, Hashimoto T, et al. Oligomeric amyloid associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques[J]. Proc Natl Acad Sci,2009,106(10):4012-4017. [6] Palop J J, Mucke L. Amyloid-Β-induced neuronal dysfunction in Alzheimer's disease:From synapses toward neural networks[J]. Nat Neurosci,2010,13(7):812-818. [7] Zhang D, Zhang C, Ho A, et al. Inactivation of presenilins causes pre-synaptic impairment prior to post-synaptic dysfunction[J]. J Neurochem,2010,115(5):1215-1221. [8] Zhang C, Wu B, Beglopoulos V, et al. Presenilins are essential for regulating neurotransmitter release[J]. Nature,2009,460(7255):632-636. [9] Tian Y, Yang C, Cui Y, et al. An excitatory neural assembly encodes short-term memory in the prefrontal cortex[J]. Cell Rep,2018,22(7):1734-1744. [10] Wang Y, Su F, Wang S, et al. Efficient implementation of convolutional neural networks in the data processing of two-photon in vivo imaging[J]. Bioinformatics,2019,35(17):1-3. [11] Zhang L, Wei M, Shao L, et al. Enhanced parylene-C fluorescence as a visual marker for neuronal electrophysiology applications[J]. Lab Chip,2018,18(23):3539-3549. [12] Su F, Yuan P, Wang Y, et al. The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm[J]. Protein Cell,2016, 7(10):735-748. [13] Shang S, Wang C, Guo C, et al. The formation and extinction of fear memory in tree shrews[J]. Front Behav Neurosci,2015,9:204. [14] Jiang W, Hua R, Wei M, et al. An optimized method for high-titer lentivirus preparations without ultracentrifugation[J]. Sci Rep,2015,5:13875. [15] Wei M, Zhang J, Jia M, et al. α/β-Hydrolase domain-containing 6(ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors[J]. Proc Natl Acad Sci,2016,113(19):E2695-2704. [16] Jiang W, Wei M, Liu M, et al. The identification of protein tyrosine phosphatase receptor type O (PTPRO) as a synaptic adhesion molecule that promotes synapse formation[J]. J Neurosci,2017,37(41):9828-9843. [17] Wei M, Jia M, Zhang J, et al. The inhibitory effect of α/β-hydrolase domain-containing 6(ABHD6) on the surface targeting of GluA2-and GluA3-containing AMPA receptors[J]. Front Mol Neurosci,2017,10:55. [18] Yang X, Hou D, Jiang W, et al. Intercellular protein-protein interactions at synapses[J]. Protein Cell,2014,5(6):420-444. [19] Zhang C, Atasoy D, Arac D, et al. Neurexins physically and functionally interact with GABAA receptors[J]. Neuron,2010,66(3):403-416. [20] Zhang C, Milunsky, J M, Newton S, et al. A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export[J]. J Neurosci,2009,29(35):10843-10854. [21] Bao L, Jin S X, Zhang C, et al. Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion[J]. Neuron, 2003,37(1):121-133. [22] Wei M, Zhang J, Jia M, et al. α/β-Hydrolase domain-containing 6(ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors[J]. Proc Natl Acad Sci,2016,113(19):E2695-E2704. [23] Zhang C,Zhou Z. Ca(2+)-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons[J]. Nat Neurosci,2002,5(5):425-430. [24] Zhang C, Xiong W, Zheng H, et al. Calcium-and dynamin-independent endocytosis in dorsal root ganglion neurons[J]. Neuron,2004, 42(2):225-236. |